Главная страница

Геометрия. Геометрия в. U 0 (t) u 0 const u 0 5 в i 0 (t)I 0 d 1 (t) i 0 2 A


Скачать 25.81 Kb.
НазваниеU 0 (t) u 0 const u 0 5 в i 0 (t)I 0 d 1 (t) i 0 2 A
АнкорГеометрия
Дата09.02.2023
Размер25.81 Kb.
Формат файлаrtf
Имя файлаГеометрия в.rtf
ТипЗакон
#927856

ано:

Для схемы:

U 0 (t)= U 0 =const U 0 =5 В

i 0 (t)=I 0 d 1 (t) I 0 =2 A

Составить уравнения состояния для цепи при t і 0.

Переменными состояния для данной схемы будут являться напряжения на емкостях С 1 и С 4 . Для нахождения уравнений состояния запишем уравнения по I и II законам Кирхгофа:

(1)

Для нахождения производных переменных состояния решим следующую систему, полученную из системы (1), приняв за неизвестные все токи, участвующие в системе (1) и первые производные переменных состояния. Переменные состояния примем за известные величины для получения их в правой части уравнений состояния:

(2)

Решаем эту систему в матричном виде с помощью MathCad:

Найти точные решения уравнений состояния

Сначала найдем корни характеристического уравнения как собственные числа матрицы, составленной из коэффициентов при переменных состояния в уравнениях состояния:

Общий вид точных решений уравнений состояния:

Вынужденные составляющие найдем как частное решение уравнений состояния, учитывая то, что если в цепи включены только постоянные источники питания, значит, и принужденные составляющие будут константами, соответственно производные принужденных составляющих будут равны нулю. Учитывая выше сказанное, найдем их из уравнений состояния следующим способом:

Начальные условия (находятся из схемы):

Для нахождения постоянных интегрирования A 1 , A 2 , A 3 , A 4 требуется 4 уравнения. Первые два уравнения получим из выражений точного решения уравнений состояния, учитывая законы коммутаций: переменные состояния не меняют своего значения в момент коммутации

При t=0:

Далее найдем значения производных переменных состояния при t=0 из уравнений состояния:

Выражения эти производных найденные из выражений решения уравнений состояния:

При t=0:

Таким образом имеем 4 уравнения для нахождения постоянных интегрирования, находим их:

Точные решения уравнений состояния:

Найти решения уравнений состояния, используя один из численных методов.

Для численного решения уравнений состояния воспользуемся алгоритмом Эйлера:

Подставляя выражения производных из уравнений состояния:

h – шаг расчета =2*10 -6 с. i=1…100. Переменными с нулевыми индексами являются значения начальных условий

Найти точные решения уравнений состояния.(второй способ)

e (A)t = a 0 + a 1 (A) e (A)t =

(X) = [e (A)t -1][A] -1 [B][V]

Построить точные и численные решения уравнений состояния, совместив их попарно на одном графике для каждой из переменной состояния

Часть 2

Анализ цепи операторным методом при апериодическом воздействии

Анализу подлежит следующая цепь:

Параметры импульса: U m =10 В t u =6*10 -5 c

Форма импульса:

Определить функцию передачи:

воспользуемся методом пропорциональных величин и определим u(t)=1(t), его Лапласово изображение U 0 (s)=1/s

Запишем уравнения по законам Кирхгофа в операторной форме, учитывая, что начальные условия нулевые:

Решаем эту систему:

Таким образом:

Функция передачи:

Найти нули и полюсы функции передачи и нанести их на плоскость комплексной частоты. Полюсы:

Нули:

Плоскость комплексной частоты:

Найти переходную и импульсную характеристики для выходного напряжения.

Импульсная характеристика:

Выделим постоянную часть в H U (s):

Числитель получившейся дроби:

Упрощенное выражение H U (s):

Для нахождения оригинала воспользуемся теоремой о разложении. Для этого найдем производную знаменателя:

Коэффициенты разложения:

Оригинал импульсной характеристики:

Переходная характеристика:

Этим же методом находим оригинал характеристики:

Определить изображение по Лапласу входного импульса

Изабражение по Лапласу фукции f(t):

Входной импульс представляет собой функцию

Поэтому изображение входного сигнала будет

Найти напряжение на выходе схемы, используя H U (s)

Изображение выходного сигнала:

Найдем отдельно оригиналы части выражения при и при части, не имеющей этого множителя:

Для части выражения при ,используя теорему о разложении:

Для части выражения не имеющей множителя ,используя теорему о разложении:

Функция напряжения на выходе схемы, получена с использованием теоремы о смещении оригинала:

2.6 Построить на одном графике переходную и импульсную характеристики цепи, на другом – входной и выходной сигналы

Переходная h 1 (t) и импульсная h(t) характеристики

Входной и выходной сигналы

Часть 3

Анализ цепи частотным методом при апериодическом воздействии

Найти и построить амплитудно-фазовую (АФХ), амлитудно-частотную (АЧХ) и фазо-частотную (ФЧХ) характеристики функций передачи H U (s)

амплитудно-фазовая характеристика:

амплитудно-частотная характеристика:

фазо-частотная характеристика:

График АЧХ:

График ФЧХ:

Определить полосу пропускания цепи по уровню 0.707

Из графика АЧХ находим полосу пропускания цепи: с -1

Найти и построить амплитудный и фазовый спектры входного сигнала по уровню 0.1

Амплитудный спектр входного сигнала:

Фазовый спектр входного сигнала:

График амплитудного и фазового спектра входного сигнала:

Ширина спектра

с -1

Сопоставляя спектры входного сигнала с частотными характеристиками цепи, дать предварительные заключения об ожидаемых искажениях сигнала на выходе цепи

Существенная часть амплитудного спектра входного сигнала укладывается в полосу пропускания, исключая полосу 0-5*10 4 с -1 , где и будут наблюдаться основные амплитудные искажения. Фазо-частотная характеристика цепи нелинейна, поэтому здесь будут иметь место фазовые искажения, что видно на рис

Найти и построить амплитудный и фазовый спектр выходного сигнала

Получаются по формулам:

3.6 Определить выходной сигнал по вещественной частотной характеристике, используя приближенный метод Гиллемина.

Вещественная характеристика:

Существенную часть этой характеристики кусочно-линейно аппроксимируем. Начертим первую и вторую производную кусочно-линейной аппроксимирующей функции

График вещественной характеристики:

Тогда:

График напряжения, вычисленного по этой формуле, и полученный в ч.2

Часть 4

Анализ цепи частотным методом при периодическом воздействии

Дано: T=18*10 -5 c. U m =10 В. t u =6*10 -5 c

форма сигнала u 0 (t):

Разложить в ряд Фурье заданную периодическую последовательность импульсов и построить ее амплитудный и фазовый спектры.

Коэффициенты ряда Фурье для u 0 (t) найдём из следующего соотношения:

где w 1 = 2 p /Т , k=0, 1, 2, ... w 1= 3.491*10 4 с.

Значения A k и a k приведены в табл. ,на рис. , построены соответственно амплитудный и фазовый спектры заданной периодически последовательности сигналов u 0 (t).

k

A k

a k

0

0

0

1

2.067

0.524

2

3.308

-0.524

3

2.774

-1.571

4

2.363

-2.618

5

1.034

2.618

6

0

1.571

7

0.413

-2.618

8

0.301

2.618

9

0

1.571

Таким образом, в соответствии с шириной спектра

Построить на одном графике заданную периодическую последовательность импульсов и ее аппроксимацию отрезком ряда Фурье, число гармоник которого определяется шириной амплитудного спектра входного сигнала, найденной в п 3.3

4.3 Используя рассчитанные в п. 3.1 АЧХ и ФЧХ функции передачи цепи, определить напряжение или ток на выходе цепи в виде отрезка ряда Фурье.

Для определения коэффициентов ряда Фурье выходного напряжения вычислим значения АЧХ и ФЧХ функции передачи для значений k w 1 , k=0, 1, 2, ..., 8. Тогда

k

A k

a k

0

0

0

1

0.208

1.47

2

0.487

-0.026

3

0.436

-1.355

4

0.361

-2.576

5

0.15

2.554

6

0

1.443

7

0.054

-2.785

8

0.037

2.429

9

0

1.371

В итоге получим:


написать администратору сайта