Концепции современного естествознания_Бочкарев А.И, Бочкарева Т.. Учебник для студентов вузов А. И. Бочкарёв, Т. С. Бочкарёва, С. В. Саксонов под ред проф. А. И. Бочкарёва. Тольятти тгус, 2008. 386 с
Скачать 2.96 Mb.
|
5.2.3. Микро- и макроэволюция. Факторы эволюции Эволюционный процесс разделяют на два этапа: - микроэволюцию – возникновение новых видов; - макроэволюцию – эволюционные преобразования на надвидовом уровне. Теория микроэволюции изучает необратимые преобразования генетико-экологической структуры популяции (вида), приводящие к формированию нового вида. При этом популяция есть элементарная единица эволюции. Теория макроэволюции рассматривает вопросы происхождения и развития надвидовых таксонов (классов, семейств, отрядов и т.д.), обосновывает закономерности развития жизни на Земле. Процесс макроэволюции длится десятки и сотни миллионов лет, а микроэволюции тысячи тел. Результатом эволюции является образование из популяций новых видов. Выделяют два основных пути видообразования: 1) аллопатрическое или географическое видообразование, связанное с пространственной изоляцией дивергировавших групп и может осуществляться в основном путем миграции или расчленения ареала различными преградами (реки, горы, почвы, климат и др.); 2) симпатрическое видообразование осуществляется в пределах ареала исходного вида несколькими способами – путем попиплоидии, гибридизации, сезонной изоляции. Вид – совокупность особей, характеризующихся общим происхождением, наследственным сходством морфологических, физиологических и биохимических особенностей, способных скрещиваться и давать плодовитое потомство, приспособленных к определенным условиям среды и занимающих определенный ареал. Критерии вида: морфологический, физиологический, биохимический, генетический, экологический, географический. Популяция – совокупность свободно скрещивающихся особей одного вида, населяющих определенный ареал и частично изолированных от других популяций. Популяцию считают простейшей эволюционной единицей. Главный фактор, определяющий единство популяции и ее относительную обособленность, – свободное скрещивание особей. Внутри популяции каждый организм одного пола имеет равную вероятность на образование брачной пары с любым организмом другого пола. Качественное отличие вида от других единиц более высоких такономических рангов – родов, семейств, отрядов – в том, что он представляет наименьшую, генетически неделимую закрытую систему (популяции, составляющие вид, тоже генетически закрытые системы, но не постоянные, а временные, поскольку пока популяция входит в какой-либо вид, она потенциально способна обмениваться генетической информацией с другими популяциями). Изменения генотипического состава популяций происходят под действием множества событий, которые тем или иным путем в состоянии преобразовывать популяции. Тем не менее возможно выделить четыре основных элементарных фактора эволюции: мутационный процесс, популяционные волны, изоляция и естественный отбор. Мутационный процесс постоянно увеличивает генетическую гетерогенность популяций, создает резерв изменчивости и дает более широкие возможности для совершенствования приспособлений при изменении среды. Элементарными наследственными изменениями являются различные формы мутаций, которые определяют изменения признаков, свойств и норм реакции у организмов. В сумме они составляют ту «неопределенную», «индивидуальную» изменчивость, которую Ч. Дарвин положил в основу процесса эволюции. Как показал, С.С. Четвериков, популяции насыщены мутациями и обладают широкими возможностями для совершенствования существующих и выработки новых приспособлений при изменении среды. Рецессивные мутации в гетерозиготном состоянии составляют скрытый резерв изменчивости, который может быть использован естественным отбором при изменении условий существования. Но сам мутационный процесс без участия других факторов эволюции не может направлять изменения эволюционного материала, резерва наследственной изменчивости. Популяционные волны или «волны жизни»– периодические и непериодические колебания численности особей в популяциях. Причинами этих колебаний могут быть различные абиотические и биотические факторы. При резком сокращении численности (например, вследствие сезонных колебаний, сокращения кормовых ресурсов и т.д.) среди оставшихся в живых немногочисленных особей могут быть редкие генотипы. Если в дальнейшем численность восстановится за счет этих особей, то это приведет к случайному изменению частот генов в генофонде данной популяции. Таким образом, популяционные волны являются поставщиком эволюционного материала. Примерами популяционных волн могут служить колебания численности грызунов, цианобактерий, насекомых, бактерий и т.п. Случайное изменение частот генов в генофонде популяции называют дрейфом генов. Изоляция– важнейший фактор эволюции, приводящий к разобщению, делающим невозможным свободное скрещивание. Размножение идет преимущественно в пределах изолята, прекращается обмен генетической информацией с другими группами. Это способствует закреплению начальной стадии изменения генофонда обособившейся группы, становлению ее как самостоятельной генетической системы. Различают пространственную и биологическую изоляцию. Пространственная изоляция связана с территориально-географическими (водные преграды, горные хребты, места, непригодные для жизни, и др.) и экологическими (расселение по разным экологическим нишам) факторами разобщения популяций. Значение пространственной изоляции зависит от величины индивидуальной активности особей вида. К биологической изоляции могут относиться особенности поведения, изменения строения и физиологической активности сроков размножения и ряда других факторов, препятствующих скрещиванию. После оплодотворения возможны нарушения конъюгации хромосом и ряд других изменений, приводящих к развитию полностью или частично стерильных гибридов, а также гибридов с пониженной жизнеспособностью. Эволюционное значение разных форм изоляции состоит в том, что она закрепляет и усиливает генетические различия между популяциями. Изменения частот генов, вызываемые приведенными выше факторами эволюции, носят случайный, ненаправленный характер, и даже их совместное действие не приводит к устойчивому осуществлению направленного процесса эволюции. Направляющим фактором эволюции является естественный отбор. Естественный отбор – ведущий, направляющий фактор эволюционного развития органического мира. Естественный отбор следует понимать как избирательное выживание и возможность оставления потомства отдельными особями. Биологическое значение особи, давшей потомство, определяется вкладом ее генотипа в генофонд популяции. Отбор действует в популяциях и его объектами являются фенотипы отдельных особей. Фенотип организма формируется на основе реализации информации генотипа в определенных условиях среды. Таким образом, отбор из поколения в поколение по фенотипам ведет к отбору генотипов, так как потомкам передаются не признаки, а генные комплексы. Для эволюции имеют значение не только генотипы, но и фенотипы и фенотипическая изменчивость. Различают три основные формы естественного отбора: стабилизирующий (сохранение признаков вида со средними значениями в относительно постоянных условиях), движущий (действует в изменяющихся условиях среды и обеспечивает преимущество особям с некоторыми отклонениями от средней нормы), разрывающий или дизруптивный (способствует сохранению сразу множеству фенотипов и действует в разнообразных условиях). 5.2.4. Направления эволюционного процесса С момента возникновения жизни развитие живой природы шло от простого к сложному, от низкоорганизованных форм к более высоко организованным и имело прогрессивный характер. А.Н. Северцов выделял три основных пути эволюционных преобразований: ароморфоз, идиоадаптация, общая дегенерация. Ароморфозы (арогенез) – усложнения строения и функций организмов, которые ведут к общему повышению организации и жизнеспособности группы в новых условиях обитания. Приводят к возникновению новых крупных систематических групп – типов, классов. Например, предки млекопитающих и птиц приобрели ароморфозы важнейших систем: нервной, кровеносной, дыхательной и др., что обеспечило освоение ими более сложных сред обитания. Идиоадаптации (аллогенез) – мелкие приспособления к специфическим условиям среды, полезные в борьбе за существование, но существенно не меняющие уровня организации. Классы насекомых, птиц и млекопитающих на основе многочисленных идиоадаптации (разнообразные преобразования различных органов) дали громадное многообразие видов. Общая дегенерация (катагенез) – упрощение организации, образа жизни в результате приспособления к более простым условиям существования. Например, переход к паразитическому или сидячему образу жизни нередко сопровождается морфофизиологическими перестройками, редукциями некоторых органов и систем В природе также наблюдается и биологический регресс, который характеризуется уменьшением численности особей группы, сокращением ареала, уменьшением числа и разнообразия дочерних групп. В итоге биологический регресс может привести к вымиранию группы. Исчезли древовидные плауны и хвощи, древние папоротники, большинство древних земноводных и пресмыкающихся. Регрессирующим является род выхухолей, состоящий всего из двух видов, семейство гинкговых, на грани вымирания находится уссурийский тигр, кондор и др. 5.2.5. Основные правила эволюции Правило необратимости эволюции (правило Л. Долло): эволюционный процесс необратим, возврат к прежнему эволюционному состоянии, ранее осуществленному в ряду поколений предков, невозможен. Правило происхождения от неспециализированных предков (правило Э. Копа): возникновение новых крупных групп, сопровождающихся повышением уровня организации, связано с примитивными неспециализированными формами. Правило прогрессирующей специализации (правило Ш. Депере): организмы единожды ставшие на путь узкой специализации, в дальнейшем буду развиваться по пути все более глубокой специализации. Правило адаптивной радиации (правило Г. Осборна): историческое развитие (филогенез) каждой группы организмов происходит путем разделения исходного ствола на несколько боковых ветвей, расходящихся в нескольких адаптивных направлениях. Правило чередования главных направлений эволюции (правило И.И. Шмальгаузена): в процессе эволюции происходит чередование ее основных направлений (ароморфозы сменяются идиоадаптациями). Биогенетический закон Геккеля–Мюллера: онтогенез представляет собой краткое повторение филогенеза. 5.3. Происхождение жизни на Земле Существует несколько гипотез о происхождении жизни на Земле. Креационизм– земная жизнь была создана Творцом. Представления о Божественном сотворении мира придерживаются последователи почти всех наиболее распространенных религиозных учений. Ни доказать, ни опровергнуть креационистическую концепцию в настоящее время невозможно. Гипотеза вечности жизни – жизнь, как и сама Вселенная, существовала всегда, и будет существовать вечно, не имея начала и конца. Вместе с тем отдельные тела и образования – галактики, звезды, планеты, организмы – возникают и погибают, т.е. существование во времени ограничено. Жизнь могла распространяться от одной галактики к другой и эта идея «заноса» на Землю жизни из Космоса называется панспермией. Идеи «вечности и безначальности» жизни придерживались многие ученые, среди них С.П. Костычев, В.И. Вернадский. Гипотеза самопроизвольного зарождения жизни из неживой материи. Идеи о самозарождении жизни высказывались еще со времен античности. На протяжении тысячелетий они верили в возможность постоянного самопроизвольного зарождения жизни, считая его обычным способом появления живых существ из неживой материи. По мнению многих ученых средневековья, рыбы могли зарождаться из ила, черви – из почвы, мыши – из тряпок, мухи – из гнилого мяса. В XVII в. итальянский ученый Ф. Реди экспериментально показал невозможность постоянного самозарождения живого. В нескольких стеклянных сосудах он поместил кусочки мяса. Часть из них он оставил открытыми, а часть прикрыл кисеей. Личинки мух появились только в открытых сосудах, в закрытых их не было. Принцип Реди: «живое – от живого».Окончательно версия о постоянном самозарождении живых организмов была опровергнута в середине XIX в. Л. Пастером. Опыты убедительно показывали, что в современную эпоху живые организмы любого размера происходят от других живых организмов. Гипотеза биохимической эволюции. По представлениям, высказанным в 20-х гг. ХХ в. А.И.Опариным, а затем Дж. Холдейном, жизнь, а точнее, живое, возникло из неживой материи на Земле в результате биохимической эволюции. 5.3.1. Условия возникновения жизни при биохимической эволюции В настоящее время учеными предложены более или менее вероятные объяснения, каким образом в первичных условиях Земли из неживой материи постепенно, шаг за шагом, развились разнообразные формы жизни. Возникновению жизни путем химической эволюции способствовали следующие условия: - первоначальное отсутствие жизни; - наличие в атмосфере соединений, обладающих восстановительными свойствами (при почти полном отсутствии кислорода О2); - наличие воды и биогенных веществ; - наличие источника энергии (относительно высокая температура, мощные электрические разряды, высокий уровень УФ-излучения). 5.3.2. Механизм возникновения жизни Возраст Земли составляет около 4,6–4,7 млрд. лет. Жизнь имеет свою историю, начавшуюся, по палеонтологическим данным, 3–3,5 млрд. лет назад. В 1924 г. русский академик А.И. Опарин выдвинул гипотезу о механизме зарождения жизни. В 1953 г. американские ученые С. Миллер и Г. Юри экспериментально подтвердили гипотезу образование органических веществ (мономеров) из газов, присутствующих в первичной атмосфере Земли. В настоящее время имеется уже достаточно много неоспоримых доказательств того, что первичная атмосфера Земли была бескислородной и, вероятно, состояла главным образом из водяных паров H2O, водорода H2 и углекислого газа CO2 с небольшой примесью других газов (NH3, CH4, CO, H2S). Возникшая на Земле жизнь постепенно изменила эти условия и преобразовала химию верхних оболочек планеты. Согласно биохимической теории А.И. Опарина в отсутствие кислорода и живых организмов, абиогеносинтезировались простейшие органические соединения – мономеров, предшественники биологических макромолекул живого вещества и ряда других органических соединений. Возможными источниками энергии для образования органических веществ без участия живых организмов, видимо, являлись электрические разряды, ультрафиолетовое излучение, радиоактивные частицы, космические лучи, ударные волны от метеоритов, попадавших в земную атмосферу, теплота от интенсивной вулканической деятельности. В отсутствие кислорода, который мог бы их разрушить, а также живых организмов, которые использовали бы их в качестве пищи, абиогенно образовавшиеся органические вещества накапливались в Мировом океане – «первичном бульоне». Следующим шагом было образование более крупных полимеров из малых органических мономеров, опять же без участия живых организмов. Американский ученый С. Фокс в результате нагревания смеси сухих аминокислот получил полипептиды различной длины. Они были названы протеиноидами, т.е. белковообразными веществами. Видимо, на первобытной Земле образование таких протеиноидов и полинуклеотидов со случайной последовательностью аминокислот или нуклеотидов могло происходить при испарении воды в водоемах, остававшихся после отлива. Если полимер образовался, он способен влиять на образование других полимеров. Некоторые протеиноиды способны, подобно ферментам, катализировать определенные химические реакции: именно эта способность, наверное, была главной чертой, определившей их последующую эволюцию. Эксперименты показывают, что один полинуклеотид, возникший из смеси нуклеотидов может служить матрицей для синтеза другого. Полипептиды благодаря их амфотерности формировали коллоидные гидрофильные комплексы (т.е. молекулы воды, образуя вокруг белковых молекул оболочку, обособляли их от всей массы воды). При этом отдельные комплексы ассоциировались друг с другом, что приводило к образованию обособленных от первичной среды капель коацерватов, способных поглощать и избирательно накапливать различные соединения. Естественный отбор способствовал выживанию наиболее устойчивых коацерватных систем, способных к дальнейшему усложнению. Дальнейшая самоорганизация сложных молекул, происходившая за счет концентрирования на границе между коацерватами и внешней средой молекул липидов, привела к образованию перегородок мембранного типа. Во внутренних полостях коацерватов, куда уже только выборочно проникать молекулы, началась эволюцию от химических реакций к биохимическим. Одной из важнейших ступеней этой теории явилось объединение способности полинуклеотидов с каталитической активностью белков-ферментов. Точка зрения Опарина и его сторонников по существу сформировала гипотезу голобиоза: структурную основу доклеточного предка (биоида) составляют жизнеподобные открытые (коацерватные) микросистемы, типа клеточной, способные к элементарному обмену веществ при участии ферментного механизма. Первичной белковая субстанция. Гипотеза генобиоза: первичной была макромолекулярная система, подобная гену, способная к саморепродукции. Первичной признана молекула РНК. 5.3.3. Начальные этапы развития жизни на Земле Как полагают, первые примитивные клетки появились в водной среде Земли 3,8 млрд. лет назад – анаэробные, гетеротрофные прокариоты, они питались синтезированными абиогенно органическими веществами или менее удачливыми своими собратьями; энергетические потребности удовлетворяли за счет брожения. При увеличении численности гетеротрофных прокариотических клеток запас органических соединений в первичном океане истощался. В этих условиях значительное преимущество при отборе должны были приобрести организмы, способные к автотрофности, т.е. к синтезу органических орг. веществ из неорганических. Видимо, первыми автотрофными организмами были хемосинтезирующие бактерии. Следующим этапом было развитие реакций с использованием солнечного света – фотосинтез. Для первых фотосинтезирующих бактерий источником электронов был сероводород. Значительно позже у цианобактерий (синезеленых водорослей) развился более сложный процесс получения электронов из воды. В качестве побочного продукта фотосинтеза в земной атмосфере начал накапливаться кислород. Это явилось предпосылкой для возникновения в ходе эволюции аэробного дыхания. Способность синтезировать при дыхании большее количество АТФ позволяла организмам расти и размножаться быстрее, а также усложнять свои структуры и обмен веществ. Считают, что предками эукариот были прокариотические клетки. Согласно теории клеточногосимбиогенеза эукариотическая клетка представляет сложную структуру, состоящую из нескольких прокариотических клеток, которые взаимодополняют друг друга. Целый ряд данных свидетельствует о происхождении митохондрий и хлоропластов, а возможно, и жгутиков от ранних прокариотических клеток, ставших внутренними симбионтами большей по размерам анаэробной клетки. Глубокие преобразования в строении и функционировании значительно увеличили эволюционные возможности эукариот, которые, появившись всего 0,9 млрд. лет назад, смогли достигнуть многоклеточного уровня и сформировать современную флору и фауну. Для сравнения следует сказать, что с момента появления первых прокариотических клеток (3,8 млрд. лет назад) до появления первых эукариотических клеток потребовалось 2,5 млрд. лет. |