Главная страница
Навигация по странице:

  • 4.3.1. Понятие литосферы Литосфера

  • 4.3.2. Экологический функции литосферы

  • Геодинамическая функция литосферы

  • Геохимическая функция литосферы

  • Геофизическая функция литосферы

  • 4.3.3. Литосфера как абиотическая среда

  • Геологическая деятельность ветра

  • Поверхностные водостоки

  • Подземные воды

  • Озера, водохранилища и болота

  • Многолетнемерзлые породы и грунты

  • Материковые

  • Осадки

  • 5. БИОЛОГИЧЕСКИЕ КОНЦЕПЦИИ ОПИСАНИЯ ПРИРОДЫ 5.1. Особенности биологического уровня организации материи Биология

  • Концепции современного естествознания_Бочкарев А.И, Бочкарева Т.. Учебник для студентов вузов А. И. Бочкарёв, Т. С. Бочкарёва, С. В. Саксонов под ред проф. А. И. Бочкарёва. Тольятти тгус, 2008. 386 с


    Скачать 2.96 Mb.
    НазваниеУчебник для студентов вузов А. И. Бочкарёв, Т. С. Бочкарёва, С. В. Саксонов под ред проф. А. И. Бочкарёва. Тольятти тгус, 2008. 386 с
    Дата10.09.2022
    Размер2.96 Mb.
    Формат файлаdoc
    Имя файлаКонцепции современного естествознания_Бочкарев А.И, Бочкарева Т..doc
    ТипУчебник
    #669818
    страница15 из 37
    1   ...   11   12   13   14   15   16   17   18   ...   37

    4.3. Литосфера как абиотическая основа жизни

    4.3.1. Понятие литосферы
    Литосфера внешняя твердая оболочка Земли, которая включает всю земную кору и часть верхней мантии. Это особый слой толщиной порядка 100 км.

    Нижняя граница литосферы нечеткая и определяется резким уменьшением вязкости пород, изменением скорости распростране­ния сейсмических волн и увеличением электропроводности пород.

    Актуальность изучения литосферы обусловлена тем, что она является источником всех минеральных ресурсов, одним из основных объектов антропогенной деятельности. В верхней части континентальной земной коры развит почвенный слой, значение которого для человека трудно переоценить. Почва органоминеральный продукт, созданный в результате многолетней деятельности живых организмов и воздействия абиотических факторов: воды, воздуха, солнечного тепла, света. Она является одним из важнейших природных ресурсов. В зависимости от климатических и геолого-географических условий почвы имеют толщину от 1525 см до 23 м.

    Почва возникла вместе с живым веществом и развивалась под влиянием деятельности растений, животных и микроорганизмов, пока не стала очень ценным для человека плодородным субстратом. Основная масса организмов и микроорганизмов литосферы сосредоточена в почве на глубине не более нескольких метров.

    Современные почвы являются трехфазной системой (твердые частицы, вода и газы, растворенные в воде), состоящей из смеси минеральных частиц (продукты разрушения горных пород) и органических веществ (продукты жизнедеятельности микроорганизмов и грибов). Почвы играют огромную роль в кругообороте воды, углекислого газа и других веществ.

    С разными породами земной коры, как и с ее тектоническими структурами, связаны разные полезные ископаемые: горючие, металлические, строительные и т.д.
    4.3.2. Экологический функции литосферы
    Обычно выделяют четыре экологические функции литосферы: ресурсную, геодинамическую, геофизическую и геохимическую.

    Ресурсная функция литосферы определяется ролью содержащихся в ней ресурсов, а также факторами пространственного характера, значимыми для жизни биоты и человека. Общеизвестно, что литосфера содержит различные материальные ресурсы, большинство из которых активно используются человеком. Именно в этой связи наблюдается значительная ресурсная напряженность, которая не только не убывает, но и год от года нарастает.

    Человечество стоит перед необходимостью системного гeopecypcного концептуального мышления. Весьма актуальные призывы ипрактические акции к ресурсосбережению необходимы, но недостаточны. Человечество пока намного более успешно разрушает, чем восстанавливает литосферу. С большим трудом осознается, что объектом охраны является такой грандиозный объект, как литосфера.

    Геодинамическая функция литосферы связана с масштабными природными и антропогенными процессами, влияющими на жизнь биоты и человека. Речь идет об аномалиях и напряженных состояниях горных массивов, участках повышенной трещиноватости и проницаемости, регионах, опасных в сейсмическом отношении или охваченных деятельностью вулканов.

    Геохимическая функция литосферы касается в основном тех геохимических неоднородностей, которые представляют опасность для биоты, в том числе для человека. Речь идет, прежде всего, о химическом загрязнении, привнесении в литосферу различных токсикантов (тяжелых металлов, пестицидов, пластмасс). Многие химические вещества обладают канцерогенными и мутагенными свойствами.

    Геофизическая функция литосферы реализуется посредством физиче­ских факторов, радиации, шумовых и тепловых эффектов. На поверхности Земли постоянно наблюдается естественный радиационный фон, который с медицинской точки зрения, как правило, не является вредным. Однако есть такие регионы, например, в Индии и Бразилии, где радиационный фон превышает предельно допустимый в 100 и даже 1000 раз.
    4.3.3. Литосфера как абиотическая среда
    В литосфере происходит множество процессов (сдвиги, сели, обвалы, эрозии и др.), имеющих целый ряд неблагоприятных экологических последствий в определенных регионах планеты, а иногда приводящих к глобальным экологическим катастрофам, цунами, землятрясениям и т.д. Перечислим некоторые из них.

    Выветривание. Разрушение и преобразование горных пород в результате выветривания происходит под воздействием различных природных факторов климата, рельефа, водной среды и веществ атмосферы. В зависимости от сочетания можно выделить различные виды выветривания, в частности физическое, химическое и биохимическое.

    Причинами физического выветривания являются перепады суточных температур, рост кристаллов солей, расклинивающее влияние замерзающей воды в трещинах и порах и корневой системы деревьев

    Химическое выветривание происходит при совместном воздействии температуры и агрессивной водной среды, содержащей в растворенном состоянии различные химические соединения.

    Биохимическое выветривание осуществляется в результате воздействия органических кислот, выделяемых организмами, и преобразования их отмерших остатков.

    Стадийность парообразовательных процессов окисление, гидратация, растворение и гидролиз приводит к формированию определенной зональности профилей выветривания. Коры выветривания играют важную экологическую роль. С ними связаны месторождения алюминия, никеля, кобальта, меди, железа и различные геохимические аномалии.

    Оползни и сели. Под воздействием гравитации происходит перемещение обломков горных пород по поверхности Земли. Скорость и перемещения зависит от размеров обломков и уклона склона. Часто гравитационные процессы называют склоновыми. Возникшие в результате склоновых процессов отложения называются коллювием.

    Гравитационные процессы разделяются на провальные, обвальные и медленные. В результате водно-гравитационных процессов возникают оползни и сели. Гравитационные процессы на конитинентальных склонах приводят к возникновению огромных по размерам подводных оползней.

    Геологическая деятельность ветра. Часто геологическую деятельность ветра называют эоловой (по имени древнегреческого бога ветров – Эола). Геологическая деятельность ветра слагается из дефляции, переноса рыхлого материала и аккумуляции. Особенно ярко эоловая деятельность проявляется в пустынных областях и оголенных, лишенных растительного покрова, широких и плоских речных долинах и на побережьях крупных озер, морей и океанов. Ветер не только разрушает, переносит и отлагает тонкий песчаный материал, но и создает эоловый песчаный рельеф барханы, продольные гряды, дюны и эоловую рябь. С деятельностью ветра связано образовани лёсса. В основном эоловая деятельность наносит ущерб хозяйственной деятельности человека.

    Поверхностные водостоки. Деятельность поверхностных вод начинается с эрозии, плоскостного смыва, накопления делювия, формирования оврагов и временных горных потоков, в устье которых формируются конусы выноса, сложенные пролювиальным и делювиальным материалом. Реки производят большую эрозионную, переносную и аккумулятивную работу и в этом смысле играют важнейшую экологическую роль. В речных долинах имеются поймы и надпойменные террасы. Последние могут быть эрозионными и аккумулятивными. В устьевых частях рек в зависимости от ряда причин формируются дельты или эстуарии.

    Подземные воды. Подземные воды по своему происхождению подразделяются на следующие типы: инфильтрационные, конденсационные, седиментогенные, магматогенные, или ювенильные, иметаморфогенные. Выделяются почвенные воды и верховодка; в зоне полного насыщения распространены грунтовые воды, межпластовые ненапорные воды и межпластовые напорные, или артезианские, воды. Перемещение подземных вод зависит от водопроницаемости пород, их трещиноватости. С подземными водами связаны карстовые процессы, выражающиеся в создании поверхностного и подземного рельефа, а также своеобразных аккумулятивных отложений и форм. К числу поверхностных форм карстового рельефа относятся карры, поноры, карстовые воронки, котловины, полья, а к подземному — пещеры и каналы (шахты). В пещерах формируются сталактиты и сталагмиты.

    Озера, водохранилища и болота. Озера и болота располагаются в понижениях рельефа и заполняются проточной или застойной водой. Озерные котловины создаются различными эндогенными и экзо­генными геологическими процессами. В то время как в озерах экзо­генные процессы складываются из абразионной транспортирующей и аккумулятивной деятельности, в болотах протекают только аккумулятивные процессы. В озерах и болотах формируются в основном тонкие обломочные и органогенные осадки. Среди болот различают озерные, лесные, луговые, верховые, низинные и приморские. Созданные человеком водохранилища по характеру геологических процессов относятся к озерам.

    Многолетнемерзлые породы и грунты. Многолетнемерзлые породы и грунты занимают около 60% территории России, но также широко распространены в Канаде и на Аляске. Мощность криолитозоны достигает 900 м. Имеются районы, где глубина многолетнего промерзания составляет 1500 м. В криолитозоне большое значение имеют различные типы льдов: погребенный, повторно-жильный, миграционный. Среди подземных вод в криолитозоне выделяют надмерзлотные межмерзлотные, внутримерзлотные и подмерзлотные.

    Мерзлотно-геологические процессы и возникающие в результате их деятельности формы рельефа весьма различны. На склонах происходят процессы, которые приводят к возникновению солифлюкционных террас. Из-за деградации криолитозоны появляется термокарст.

    Материковые и горные ледники. Площадь современных материков покровных (Гренландия и Антарктида) и горных ледников превышает 160 млн. км2. Предгорные ледники представляют собой слившиеся горные ледники, выходящие в предгорья. Движение ледников связано с пластичным или высокопластичным течением льда. При движении ледников происходит перенос обломочного материала и его аккумуляция.

    К ледниковым отложениям относятся морены, среди которых различают донные, абляционные, конечные; к водно-ледниковым озы, комы и камовые террасы. В приледниковых областях выделяют зандры, лимногляциальные (озерно-ледниковые) отложения и лёссы.

    Осадки морей и океанов. В морях и океанах накапливаются различные типы осадков, среди которых выделяют терригенные (обломочные) хемогенные, органогенные и вулканогенные. Распространение генетических типов осадков зависит от климатической, вертикальной и циркумконтинентальной зональностей. За счет процессов диагенеза осадки с течением времени преобразуются в горные породы.

    Извержения вулканов. Магматические горные породы возникают из алюмосиликатного расплава магмы. Разнообразие магматических пород определяется дифференциацией магмы и ее взаимодействием с вмещающими образованиями. Флюидное давление играет большую роль в кристаллизации магмы. Типы вулканических построек и разнообразие извержений зависят от состава магмы, формы подводящего канала и концентрации летучих веществ. Распространение вулканов связано с активными границами литосферных плит.
    Контрольные вопросы
    1. Какова история образования оболочек Земли?

    2. Каков главный метод изучения внутреннего строения Земли?

    3. Перечислите основные геосферы.

    4. Что такое граница Мохоровичича?

    5. Назовите основные фазы образования Земли.

    6. Что такое суперконтиненты Пангея I и II?

    7. В какие периоды возникла атмосфера Земли?

    8. Каковы основные экологические функции литосферы?

    9. Какими факторами определяется энергетическая динамика Земли?

    10. В чем суть концепции литосферных плит?
    5. БИОЛОГИЧЕСКИЕ КОНЦЕПЦИИ ОПИСАНИЯ ПРИРОДЫ
    5.1. Особенности биологического уровня организации материи
    Биология (от греч. «биос» – жизнь, «логос» – учение) – наука о живой природе.

    Биология изучает живые организмы – вирусы, бактерии, грибы, животных и растения. В настоящее время на Земле описано около 3 млн. ви­дов живых организмов (более 100 тыс. видов грибов, около 500 тыс. видов растений и более 2 млн. видов животных). Однако реальное число видов на Земле в несколько раз больше. Современный видовой состав – это лишь около 5% от видового разнообразия жизни за период ее суще­ствования на Земле.

    По изучаемым объектам биологию подразделяют на самостоятельные науки – микробиологию, ботанику, зоологию, включающие частные дисциплины: систематику (изучает разнообразие и родство разных групп живых организмов), морфологию (исследует внешнее строение органов и их видоизменения), анатомию (изучает внутренне строение), физиологию (изучает процессы, протекающие в живых организмах).

    По уровню изучения живой материи различают: молекулярную биологию, учение о клетке – цитологию (от греч. «цитос» – клетка), учение о тканях – гистологию (от греч. «гистос» – ткань), науку об органах – анатомию, биологию организмов, популяций, видов и т.д.

    Единые закономерности, характерные для всего живого и раскрывающие сущность жизни, ее формы и развитие, составляет предмет общей биологии. Универсальные свойства живого – наследственность и изменчивость изучает генетика. Взаимоотношени­я живых организмов между собой и со средой их обитания изучает экология(от греч. «ойкос» – дом, жилище, местообитание).

    Разнообразие используемых методов и подходов химии, физики и математики для исследования живой природы позволяет выделить биохимию, молекулярную биологию, биофизику, генную инженерию (создание организмов с новыми комбинациями наследственных признаков и свойств) и др.

    Мир живых существ, включая человека, представлен биологическими системами различной структурной организации и разного уровня соподчинения. Все живые организмы (кроме вирусов) состоят из клеток. Клетки одноклеточных организмов представляют собой целостные, способные выполнять все необходимые для обеспечения жизнедеятельности функции. Клетки многоклеточных организмов специализированы, т.е. могут осуществлять лишь какую-либо одну функцию и не способны само­стоятельно существовать вне организма, взаимосвязь многих клеток приводит к созданию нового ка­чества, не равнозначного простой их сумме. Элементы организма – клетки, ткани и органы – в сумме еще не представляют собой це­лостный организм. Лишь соединение их в исторически сложившийся в процессе эволюции порядок и их взаимодействие образуют целостный организм, способный существовать в окружающей среде в динамическом равновесии с ней.

    Происхождение жизни на Земле. Основные теории возник­новения жизни. Креационизм, самопроизвольное зарождение жизни, стационарного состояния, панспермии. Теория биохи­мической эволюции. Теория коацерватов А.И. Опарина: орга­нические вещества могли синтезироваться из более простых со­единений под действием интенсивной солнечной радиации. Ре­шающую роль в превращении неживого в живое сыграли белки. Опыты Стенли Миллера. Природа первых организмов – гетеротрофы. Симбиогенез как возможный путь формирования клет­ки эукариот.

    Цитология наука о клетке. Клетка система мембран. Впервые название клетка применил Роберт Гук. Одноклеточные организмы открыл Антон Левенгук. Т. Шванн сформулировал клеточную теорию. Карл Бэр открыл яйцеклетку млекопитаю­щих.

    Современная клеточная теория:

    Клетка – основная единица строения и развития всех живых организмов, наименьшая единица живого.

    Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому со­ставу, основным проявлениям жизнедеятельности и обмену ве­ществ.

    Размножение клеток происходит путем их деления и каж­дая клетка образуется в результате деления исходной (материнской) клетки.

    В сложных многоклеточных организмах клетки специали­зированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.

    Прокариоты и эукариоты. Особая - неклеточная форма жизни вирусы.

    Оболочка клетки. Многослойная мембрана, состоящая из белков и липидов. Функции: барьер, транспорт – обмен веществ, механическое соединение за счет выростов и каналов. Диффу­зия, осмос, фильтрация, избирательная проницаемость, фагоци­тоз, пиноцитоз. Органоиды органы клетки и выполняемые ими основные функции.

    Химический состав клетки: липиды, углеводы, белки.

    Состав и функции белков. Полимеры состоят из многих мономеров аминокислот. У всех аминокислот есть одинаковая часть, состоящая из аминогруппы и карбоксильной группы другая часть аминокислот разная называется радикалом. Структура белка: первичная, вторичная, третичная, четвертич­ная.

    Нуклеиновые кислоты. ДНК, РНК полимеры, состоят из нуклеотидов. Состав: азотистое основание, углевод и фосфор­ная кислота. Аденин, гуанин, цитозин, тимин. Удвоение моле­кулы ДНК происходит по принципу комплиментарности.

    Обмен веществ. 1) Обеспечение клетки строительным материалом – пластический обмен. 2) Обеспечение клетки энергией – энергетический обмен. Постоянный обмен веществ и энергии. Открытая система

    Энергетический обмен (в частности, получение клеткой энергии) происходит за счет расщепления аденозинтрифосфорной кислоты до аденозиндифосфорной кислоты. АТФ по струк­туре относится к нуклеотидам. В ней содержатся остатки азоти­стого основания (аденина), углевода (рибозы) и три остатка фосфорной кислоты. Под действием определенных ферментов она подвергается гидролизу, т.е. присоединяет молекулу воды и расщепляется. Восстановление запаса АТФ идет в две стадии: гликолиз бескислородное расщепление и дыхание кислород­ное расщепление. Участвуют многочисленные ферменты. Ос­новное условие нормального течения кислородного процесса целостность митохондриальных мембран.

    Автотрофы и гетеротрофы. Фотосинтез синтез органиче­ских соединений, идущий за счет энергии солнечного излучения. Световая фаза и темновая фаза. Хемосинтез присутствует у азотфиксирующих и нитрифицирующих бактерий. Окисление аммиака в азотную кислоту. Окисление азотистой кислоты в азотную.

    Код ДНК. Отрезок молекулы ДНК, содержащий информацию о первичной структуре одного определенного белка, называется геном. В молекуле ДНК содержится несколько сотен генов. На молекулах ДНК записана и хранится информация о первичной структуре всех белков данной клетки. Транскрипция. Размножение и индивидуальное развитие организмов. Одно из свойств живого дискретность, то есть на любом уровне организации живая материя представлена элементарными структурными единицами. Для клетки это органоид и его целостность обуславливается постоянным воспроизведением ноорганоидов вместо износившихся. Каждый организм состоит из клеток. Развитие и существование организма обеспечивается размножением клеток.

    Животный мир и мир растений состоят из отдельных единиц видов. Каждая особь данного вида смертна и существова­ние видов поддерживается размножением организмов. Таким образом, дискретность жизни предполагает ее воспроизводство, то есть процесс размножения.

    Две основные формы размножения половое и бесполое, половое смена поколений и развитие организмов при образовании специализированных половых клеток. При бесполом размножении новая особь появляется из неспециализированных теток тела - соматических, неполовых.

    При бесполом размножении процесс деления клеток называется митозом. Генотип идентичен материнскому.

    Половое размножение дает генетическое преимущество по сравнению с бесполым. Происходят комбинации генов, при­надлежащих обоим родителям. Поскольку рекомбинация генов происходит в каждом поколении, то это дает значительно более богатый материал для эволюции, чем мутационный процесс.

    Основное направление эволюции полового размножения – сингамия, т.е. оплодотворение, при котором обязательно слия­ние двух половых клеток, происходящих от разных особей. Та­кой тип полового размножения наилучшим образом обеспечи­вает генетическое разнообразие потомства.

    Гаметогенез развитие половых клеток. В них содержится гаплоидный набор хромосом в два раза меньше, чем в сомати­ческих клетках. Процесс образования половых клеток мейоз. Биологическая роль мейоза заключается в поддержании посто­янства хромосомного набора, свойственного данному виду ор­ганизмов. Функции сперматозоида – внесение генетической информа­ции в яйцеклетку и активация ее развития. В яйцеклетке же за­ложены все основные факторы, позволяющие организму разви­ваться. У некоторых животных яйцеклетка может развиваться без оплодотворения партеногенез. При партеногенезе образуются особи только одного пола мужского или женского.

    Индивидуальное развитие (онтогенез) процесс реализа­ции генетической информации, полученной от родителей. Эм­бриональный и постэмбриональный периоды.

    Начальные стадии эмбрионального развития.

    1) Дробле­ние многоклеточный зародыш бластула. Клетки имеют дип­лоидный набор хромосом, одинаковы по строению, т.е. клетки бластулы не дифференцированы.

    2) Гаструляция образуются первые эмбриональные ткани. Происходит дифференциация клеток. Возникают два зародышевых листка наружный экто­дерма и внутренний энтодерма. Затем формируется новый за­родышевый листок мезодерма. Клетки каждого листка отли­чаются особенностями строения. Зародышевые листки занима­ют определенное положение в зародыше и дают начало соот­ветствующим органам.

    3) Первичный органогенез образование комплекса осевых органов зародыша нервной трубки, хорды, кишечной трубки.

    Из одних и тех же зародышевых листков у разных видов образуются одни и те же ткани и органы. Это говорит о гомологичности зародышевых листков, что, в свою очередь, является одним из доказательств единства животного мир.

    Постэмбриональный период развития начинается в момент рождения или выхода организма из яйцевых оболочек. Разви­тие может быть прямым или сопровождаться метаморфозом. При прямом развитии из яйцевых оболочек или из тела матери выходит организм небольших размеров, но в нем заложены все основные органы, свойственные взрослому животному (беспозвоночные с неполным превращением, пресмыкающиеся, птицы, млекопитающие). В период постэмбрионального развития происходит значительный рост организма и половое созре­вание.

    При развитии с метаморфозом из яйца выходит личинка, подчас не имеющая сходства со взрослым организмом, со спе­циальными личиночными органами, которые отсутствуют во взрослом состоянии. Личинка растет и развивается. Личиноч­ные органы заменяются на органы взрослого организма. Мета­морфоз связан с переменой образа жизни или среды обитания. Значение заключается в том, что личинки могут самостоятельно питаться и растут, накапливая клеточный материал для форми­рования органов, свойственных взрослым животным. Смена жизненных фаз позволяет виду разнообразнее использовать экологические ниши, имеющиеся в биоценозе, а также несет расселительную функцию.

    Закон зародышевого сходства Карла Бэра. Появление в эмбриональном периоде развития современных животных при­знаков, свойственных далеким предкам, отражает эволюцион­ные преобразования в строении органов.

    Биогенетический закон Мюллера и Геккеля. Онтогенез ка­ждой особи есть краткое и быстрое повторение филогенеза ви­да, к которому эта особь относится.

    А.Н.Северцов установил, что в индивидуальном развитии проявляются признаки не взрослых предков, а их зародышей. Таким образом, основу филогенеза составляют изменения, про­исходящие в онтогенезе отдельных особей.

    Генетика изучает два фундаментальных свойства живых организмов наследственность и изменчивость. Наследствен­ность это свойство родителей передавать свои признаки и осо­бенности развития следующему поколению. Обеспечение пре­емственности свойств лишь одна из сторон наследственности; вторая сторона обеспечение точной передачи специфического для каждого организма типа развития, становления в ходе он­тогенеза определенных признаков и свойств, определенного ти­па обмена веществ. Клетки, через которые осуществляется пре­емственность поколений, половые при половом размножении и соматические при бесполом несут в себе только зачатки возможности развития признаков и свойств. Эти зачатки по­лучили название генов. Ген это участок молекулы ДНК (или участок хромосомы), определяющий возможность развития отдельного элементарного признака. При наличии в орга­низме (генотипе) какого-либо гена признак, обусловленный этим геном, может и не проявиться. Возможность развития признаков в значительной степени зависит от условий внеш­ней среды. У всех организмов данного вида каждый ген рас­полагается в одном и том же месте (или локусе) строго опре­деленной хромосомы. Гаплоидный и диплоидный набор хро­мосом. Аллельные гены и множественный аллелизм. Генотип и фенотип.

    Законы Менделя. Гибридное потомство. Явление преобла­дания у гибрида признака одного из родителей Мендель назвал доминированием. Признак доминантный. Подавляемый ре­цессивный. Гомозиготный и гетерозиготный организмы. Не­полное доминирование. Явление расщепления.

    Гипотеза чистоты гамет. Анализирующее скрещивание. Сцепленное наследование генов - явление совместного наследо­вания генов, локализованных в одной хромосоме, а локализа­ция генов в одной хромосоме – сцеплением генов.

    Генетика определения пола. Хромосомы, одинаковые у обоих полов, называются аутосомами. Половые хромосомы те, по которым мужской и женский полы отличаются друг от друга. Гомогаметный XX. Гетерогаметный ХУ. Наследование, сцепленное с полом.

    Методы генетических исследований: гибридологический метод (метод скрещивания); цитогенетический метод; генеало­гический метод; близнецовый метод.

    Закономерности изменчивости. Изменчивость процесс, отражающий взаимосвязь организма с внешней средой (генотипическая и модификационная). Наследственные измене­ния мутации. Изменения, вызванные факторами внешней сре­ды, не являются наследственными. Степень варьирования при­знака называется нормой реакции. Гомологические ряды Вави­лова.

    Развитие биологии в додарвиновский период. Истоки эволюционного учения - воззрения натурфилосо­фов Древней Греции.

    Основные знания об окружающем нас мире получены в пе­риод начиная с эпохи Возрождения до настоящего времени. Эпоха Возрождения – представление об абсолютной неизменяе­мости природы. Вершиной искусственной систематики явилась система К. Линнея в середине XVIII века. Ученый-метафизик XVIII в. Ж. Кювье виды животных созданы Творцом и оста­ются неизменными.

    Первая теория эволюционного развития органического мира создана в конце XVIII начале XIX веков Ж.-Б. Ламарком. Эволюционное учение Ламарка строится на признании из­менчивости организмов вследствие влияния внешней среды и наследования приобретенных признаков.

    К. Рулье (русский ученый) середина XIX века считал, что по общему закону природы все организмы образуются пу­тем медленных и постоянных изменений. Крупнейший русский эмбриолог YIX века К. Бэр обосновал закон зародышевого сходства. Во второй четверти XIX века М. Шлейден и Т. Шванн соз­дали клеточную теорию научное обоснование единства жи­вотного мира.

    Основные идеи эволюционного учения Дарвина:

    Учение о естественном отборе. Каждый вид организмов стремится к безграничному размножению, но огромная часть организмов гибнет, не оставив потомства. Причины гибели - конкуренция с представителями своего же вида за корм, напа­дение врагов, действие неблагоприятных абиотических факторов. Следует второй вывод: в природе происходит непрерывная борьба за существование. Дарвин выделил 3 формы борьбы за существование: а) внутривидовую; б) межвидовую; в) борьбу с неживой природой - неблагоприятными условиями. В природе происходят процессы избирательного уничтожения одних особей и преимущественного размножения других, это явление Ч. Дарвин назвал естественным отбором или выживанием наи­более приспособленных.

    При изменении условий внешней среды меняется направ­ление давления отбора и полезными для выживания оказыва­ются какие-то иные признаки по сравнению с существующими. Движущей силой изменения видов, т.е. эволюции, является есте­ственный отбор. Материалом для отбора служит наследствен­ная изменчивость.

    В основе эволюционной теории Ч. Дарвина лежит пред­ставление о виде. Видом называется совокупность особей, сход­ных по строению, имеющих общее происхождение, свободно скрещивающихся между собой и дающих плодовитое потомство

    Одна из важнейших характеристик вида его репродуктив­ная изоляция. Реально вид существует в виде популяций. Популяция является элементарной единицей эволюции.

    Учение о микроэволюции составляет ядро современного дарвинизма.. Микроэволюция процесс, идущий на уровне популяций. Образование нового вида это итог микроэволюции.

    В микроэволюционном процессе выделяются элементар­ные единицы, явления и процессы. Элементарная эволюционная единица популяция, элементарный эволюционный материал – наследственная изменчивость, элементарные факторы эволюции: а) мутационный процесс; б) популяционные волны (волны сизни); в) изоляция; г) естественный отбор.

    Мутационный процесс ведет к изменению частот отдельных аллелей (генов) в популяции и является поставщиком нового материала в популяцию. Поддерживая высокую степень генетического разнообразия популяций, он создает основу для действия естественного отбора. Многие мутации оказываются федными. Обезвреживание мутаций происходит в результате толового процесса. Безграничная изменчивость была бы вредна, но выработаны механизмы, не только увеличивающие изменчивость, но и понижающие ее.

    Популяционные волны или колебание численности популяций. Действие волн жизни предполагает неизбирательное случайное уничтожение особей, благодаря чему редкий перед началом волны аллель может сделаться обычным и быть под­хвачен естественным отбором. Влияние популяционных волн может быть особенно заметно в популяциях малой величины. Волны жизни поставщики эволюционного материала.

    Изоляция. Изоляция возникновение любых барьеров, ограничивающих панмиксию. Изоляция закрепляет и усили­вает начальные стадии генетической дифференцировки, без этого закрепления невозможно формообразование (видо­образование). Важная характеристика длительность изоля­ции. В природе существуют: пространственная и биологиче­ская изоляции (биотопическая, этологическая, морфофизиологическая).

    Естественный отбор это единственный направленный эволюционный фактор, движущая сила эволюции. Предпосыл­ки естественного отбора: гетерогенность особей, прогрессия размножения и давление жизни. Во всех случаях избыточная численность и экологическая предпосылка естественного отбо­ра борьба за существование. Объект отбора особи или груп­пы особей. В пределах популяции отбираются, то есть преиму­щественно оставляют потомство особи, обладающие какими-либо преимуществами перед другими, т.е. в процессе естествен­ного отбора важно дифференциальное размножение особей. С позиций генетики под естественным отбором нужно пони­мать избирательное воспроизведение разных генотипов. Глав­ное значение в эволюции имеет не само выживание особей, а их вклад в генофонд популяции.

    Существует важное ограничение сферы действия отбора. Он не может изменить организацию вида без пользы для этого вида. Однако отбор часто ведет к созданию признаков и свойств, невыгодных для отдельной особи и полезных для попу­ляции в целом (жало пчелы). Естественный отбор доказан экс­периментально.

    Основные формы естественного отбора в популяциях.

    1. Стабилизирующий отбор. Это форма естественного отбора, направленного на поддержание в популяциях среднего, ранее сложившегося, значения, признака. Действует до тех пор, пока условия жизни существенно не меняются.

    2. Движущий отбор. Движущей (или направленной) фор­мой отбора принято называть отбор, способствующий сдвигу среднего значения признака или свойства. Такой отбор способ­ствует закреплению новой нормы взамен старой, пришедшей в соответствие с изменяющимися условиями.

    3. Дизруптивный отбор. Дизруптивный отбор направлен против особей со средним и промежуточным характером при­знаков и ведет к установлению полиморфизма в пределах попу­ляций. Популяция как бы разрывается по данному признаку на несколько групп.

    Другие, более частные формы отбора: половой, индивидуальный, групповой.

    Результат действия естественного отбора возникновение адаптации или приспособлений, например, таких как покрови­тельственная окраска, мимикрия, предостерегающая окраска, различные средства защиты у растений и животных.

    Целесообразность живой природы результат исторического развития видов в определенных условиях. Поэтому она всегда относительна и имеет временный характер. Ни один из приспособительных признаков не обеспечивает абсолютной безопасности. Любые приспособления целесообразны только в обычной для вида обстановке. При изменении условий среды они оказываются бесполезными или даже вредными (резцы грызунов).

    Преадаптации. В некоторых случаях у животных оказыва­ются развитыми те органы или структуры, которые могут оказаться полезными для освоения новой среды обитания. Такие явления носят названия предадаптаций.

    Видообразование источник возникновения многообразия в живой природе. Видообразование это разделение прежде единого вида на два или несколько. Основные пути и способы видообразования аллопатрическое (географическое) и симпатрическое.

    Макроэволюция. Под ней понимается эволюция организ­мов выше видового уровня. Гранью между микро- и макроэво­люцией является этап формирования видов, видообразование. После образования вида единство и непрерывность эволюцион­ного процесса не нарушается. На фоне непрерывно текущего микроэволюционного процесса при видообразовании происхо­дят макроэволюционные значимые события. Одним из таких наиболее общих макроэволюционных событий может рассмат­риваться возникновение сложной системы форм родственных организмов, полностью биологически изолированных и обра­зующих иерархическую систему таксонов:

    вид - род – семейство - отряд - класс и т.д.

    Макроэволюционные процессы. Филогенез или эволюция крупных систематических групп (выше видового).

    Первичные формы филогенеза:

    1. Филетическая эволюция процесс изменения исходного вида. В процессе филетической эволюции получается филетическое древо. В отличие от микро­
    эволюционного процесса филетическая эволюция необратима.
    2. Дивергенция. Это другая первичная форма эволюции таксона (вида). В результате изменения направления отбора в разных условия происходит дивергенция (расхождение) ветвей древа жизни от единого ствола предков. Процессы дивергенции в макроэволюции необратимы.

    Более частные макроэволюционные процессы конвергенция и параллелизм. Конвергенция или возникновение различ­ных признаков в систематически далеких, неродственных груп­пах (крыло бабочки и летучей мыши). Параллелизм - формиро­вание сходного фенотипического облика у первоначально ра­зошедшихся (дивергировавших), но родственных групп.

    Направления эволюции. Арогенез переход эволюциони­рующей группы в новую адаптивную зону (крыло птицы, кистеперость рыб и т.д.). Аллогенез (идеоадаптации) - эволюция группы внутри одной адаптивной зоны.

    Правила эволюции: необратимости эволюции - организм не может вернуться к прежнему состоянию; правило прогресси­рующей специализации эволюционирующая группа идет по пути все более глубокой специализации; правило происхождения от неспециализированных предков новые крупные группы берут начало от сравнительно неспециализированных предков; правило адаптивной радиации - эволюция любой группы со­провождается разделением ее на ряд филогенетических стволов, которые расходятся в разных адаптивных направлениях от не­кого исходного среднего состояния.

    Современные проблемы эволюционного учения. Ней­тральная эволюция или постепенная эволюции за счет накопле­ния молекулярных изменений (мутаций), дрейфа генов и других процессов.

    Монофилия и полифилия различных таксономических групп. Сетчатая эволюция - происхождение таксонов гибридогенным путем и один из возможных механизмов полифилитического происхождения некоторых групп. Гипотеза симбиогенеза и полифилитическое происхождение типов и царств природы.

    Проблемы эволюции экосистем. Устойчивость экосистем и преобладание в ненарушенных экосистемах стабилизирующего отбора. Сильная взаимосвязь видов в экосистемах порождает их одновременную или сопряженную эволюцию (коэволюцию) при глобальных изменениях на Земле.
    1   ...   11   12   13   14   15   16   17   18   ...   37


    написать администратору сайта