Главная страница
Навигация по странице:

  • Энергия приливов и отливов Как известно, морские приливы и отливы

  • Энергия рек Принцип работы гидроэлектростанций

  • Энергия атомного ядра Освобождение и использование ядерной энергии

  • Учебник для вузов. Издание второе, дополненное и исправленное Уфа. Ооо ДизайнПолиграфСервис


    Скачать 16.32 Mb.
    НазваниеУчебник для вузов. Издание второе, дополненное и исправленное Уфа. Ооо ДизайнПолиграфСервис
    АнкорKorshak_A_A_Osnovy_neftegazovogo_dela.doc
    Дата28.01.2017
    Размер16.32 Mb.
    Формат файлаdoc
    Имя файлаKorshak_A_A_Osnovy_neftegazovogo_dela.doc
    ТипУчебник
    #190
    страница2 из 88
    1   2   3   4   5   6   7   8   9   ...   88

    ПРЕДИСЛОВИЕ


    Топливно-энергетический комплекс (ТЭК) является одной из основ экономики России. Сотни тысяч его специалистов трудятся во всех уголках нашей Родины, обеспечивая ее нефтью и газом. Кроме того тысячи молодых специалистов, закончив ВУЗы, ежегодно вливаются в ТЭК. Свой путь к будущей специальности они начинали с изучения основ нефтегазового дела.

    Ознакомившись с содержанием данной книги, читатель узнает много интересного, получит целостное представление о нефтяной и газовой промышленности, будет готов к изучению общетехнических дисциплин и, наконец, получит начальное представление об избранной им профессии.

    В книге описаны история применения нефти и газа, развитие и современное состояние нефтяной и газовой промышленности России, взгляды на происхождение нефти и газа. Читатель узнает, надолго ли хватит нефти и газа, какие месторождения являются самыми крупными в мире, как бурят скважины, что значит добывать нефть и газ, как и во что перерабатывают углеводороды.

    Между добычей и переработкой нефти и газа находится важное звено ТЭК - магистральные трубопроводы. Подобно кровеносной системе они пронизывают страны и континенты. Только циркулирует в них не кровь, а энергоносители. В книге рассказывается о том, как появились нефте- и газопроводы, какие объекты и сооружения входят в их состав, как они работают.

    Трубопроводы используются и по другому назначению - по ним транспортируются твердые и сыпучие материалы. В ряде случаев это выгоднее, чем использовать традиционные виды транспорта. Поэтому в книге рассматриваются основы гидро-, пневмо- и капсуль-ного (контейнерного) транспорта таких материалов.

    Наконец, продукты нефтепереработки и природный газ необходимо доставить до потребителей. Для этого служит система их распределения, в которую входят газохранилища, нефтебазы, нефте-продуктопроводы, газораспределительные сети, автозаправочные, газонаполнительные и газораспределительные станции. Общие сведения об их устройстве, применяемом оборудовании, принципах работы дополняют общую картину ТЭК, представленную в данной книге.

    Авторы выражают благодарность преподавателям Уфимского государственного нефтяного технического университета Абызгильдину Ю.М., АгзамовуФ.А., Душину В.А., Зейгману Ю.В., Зорину В.В., Матюшину П.Н., Шамаеву Г.А. за ценные замечания по улучшению ее содержания.

    1. РОЛЬ НЕФТИ И ГАЗА В ЖИЗНИ ЧЕЛОВЕКА

    1.1. Современное состояние и перспективы развития энергетики


    Если первобытному человеку было достаточно 300 г условного топлива (210 ккал или 8,8 МДж) в день, получаемых вместе с пищей, то сегодня в развитых странах на одного человека в год тратится до 13 т условного топлива. Вследствие научно-технической революции расход энергии во всех ее видах растет, удваиваясь каждые 10 лет.

    На рис. 1.1 показана зависимость ВВП - внутреннего валового продукта (в долларах США в системе постоянных цен 1993 г.), приходящегося на 1 человека, от потребления энергии (в тоннах условного топлива) на душу населения в различных странах мира в 1968 г. Видно, что эти параметры тесно взаимосвязаны.

    Хотя в конце XX века в приведенном графике произошли изменения, тем не менее очевиден вывод: «Если люди будут лишаться энергетических ресурсов, их материальное благосостояние будет падать» (П.Л. Капица).

    В этой связи представляет интерес оценка современного состояния и перспектив развития энергетики.

    Различают возобновляемые и невозобновляемые источники энергии. К возобновляемым относятся Солнце, ветер, геотермальные источники, приливы и отливы, реки. Невозобновляемыми источниками энергии являются уголь, нефть и газ.

    Солнечная энергия

    В минуту Солнце посылает на Землю столько энергии, сколько за полтора года вырабатывают все электростанции нашей страны. Поэтому проблема освоения этой энергии давно волнует ученых.

    Пионером использования солнечной энергии считается Архимед, сумевший по преданию с помощью зеркал сжечь вражеский флот. В настоящее время в мире построено большое количество установок и целых гелиостанций, питающих различных энергопотребителей: отопительные системы зданий, системы связи, водообеспечения и т.д.

    Однако солнечная энергия относится к рассеянным видам энергии: на 1 и2земной поверхности выпадает в среднем всего около 160 Вт солнечной радиации. Для использования в практических целях ее надо собирать с большой поверхности. Пока низок и к.п.д. фотоэлектрических преобразователей (не более 25 %). Кроме того смена дня ночью, а также нередко встречающаяся облачность резко снижают эффективность солнечных установок, делая получаемую энергию значительно более дорогой, чем при использовании традиционных методов.

    Специалисты видят выход в создании космических солнечных электростанций (КЭС). Дело в том, что в космосе нет восходов и закатов Солнца, нет облаков, препятствующих прохождению лучей. Поэтому на единицу поверхности космической площадки поступает в 10 раз больше энергии, чем на такую же площадь земной поверхности. Уже сегодня разработаны проекты КЭС массой до 60000 т с площадью солнечных батарей до 50 км2. Поднятая над поверхностью Земли на 36000 км такая станция будет иметь мощность 5 млн. кВт, т.е. на 1 млн. кВт больше, чем самая крупная в Европе Ленинградская АЭС. Станция, выведенная на стационарную орбиту «повиснет» над одной точкой земной поверхности. Передавать полученную энергию на Землю предполагается с помощью лазеров или сверхвысокочастотного излучения.



    Рис. 1.1 Связь валового внутреннего продукта с потреблением энергетических ресурсов по странам мира в 1966 г. (по Д. Мидовс с изменениями)
    Реализация данного проекта сдерживается тем, что добытая в космосе энергия окупит сгоревшее при запусках ракет (с элементами для монтажа КЭС) топлива только через 30 лет безаварийной работы станции.

    Энергия ветра

    Ветер - движение воздуха относительно поверхности Земли -имеет солнечное происхождение.

    Как известно, в зависимости от цвета тела поглощают большую или меньшую часть солнечного излучения. Чем больше степень черноты, тем больше тело нагревается. Поскольку различные участки поверхности Земли имеют разную степень черноты, то под действием солнечных лучей они нагреваются до различной температуры. Соответственно, разную температуру имеют и нижние слои атмосферы. Вследствие этого давление воздуха на одной и той же высоте неодинаково, что и приводит к горизонтальному перемещению больших масс воздуха.

    Использование энергии ветра имеет давнюю историю. Многие столетия воды морей и океанов бороздили парусники, а ветряные мельницы были привычным элементом пейзажа в сельскохозяйственных районах Европы.

    Первые ветряные электрогенераторы появились в 90-х годах XIX века в Дании. А в 2000 г. при помощи ветра производилось 10 % необходимого этой стране электричества. В США первая относительно крупная ветряная электростанция была построена в 1980 г. в Нью-Гэмп-шире. Ресурсы же ветряной энергии в этой стране таковы, что способны обеспечить 25 % прогнозируемой на конец века потребности США в электричестве. Уже сегодня при помощи ветра в стране производят количество электроэнергии, позволяющее покрыть 15 % потребности одного из крупнейших городов США - Сан-Франциско.

    Работы по строительству ветряных электростанций ведутся во многих странах, в том числе в Австралии, Великобритании, Канаде, Китае, Нидерландах, Швеции и других.

    Россия также располагает огромными ресурсами энергии ветра — около 6,2 трлн. кВт-ч, что почти в 10 раз больше, чем РАО "ЕС России" произвело электроэнергии в 2000 году. Они сосредоточены вдоль побережья Северного Ледовитого океана, а также в районах, прилегающих к Черному, Каспийскому и Балтийскому морям.

    Освоение энергии ветра связано с определенными трудностями. Во-первых, ветроустановки работоспособны лишь в некотором интервале скоростей воздушного потока: они не вырабатывают электроэнергии в «штиль» и могут быть повреждены при скоростях более 20 м/с. Во-вторых, количество вырабатываемой установками энергии зависит от скорости ветра. В связи с этим возникают проблемы утилизации излишков энергии, вырабатываемой при высоких скоростях воздушных масс и, наоборот, компенсации нехватки энергии, возникающей при низких скоростях ветра.

    Имеется ряд предложений по обеспечению бесперебойности энергоснабжения. Например, при сильном ветре можно накапливать энергию, вырабатывая на избыточной мощности водород, путем электролиза воды. А в периоды штиля вырабатывать электроэнергию, используя генератор, работающий на водородном топливе.

    Перспективным может стать совмещение ветровых и небольших по мощности гидроаккумулирующих электростанций (ГАЭС). В этом случае часть энергии, полученной при сильном ветре, используют для того, чтобы закачать воду в верхний бассейн ГАЭС. Возврат накопленной энергии во время штиля осуществляется благодаря вращению специальной турбины при перепуске воды из верхнего бассейна ГАЭС в нижний.

    В настоящее время на ветряных электростанциях вырабатывается около 0,5% от общего объема мирового производства электроэнергии. Ожидается, что к 2040 г. эта цифра возрастет до 20%.

    Самый быстрый рост ветроэнергетических мощностей ожидается в Европе, Северной Америке и Китае.

    Геотермальная энергия

    С увеличением глубины температура горных пород повышается: на расстоянии 50 км от поверхности ома составляет 700...800 "С, 500 км - около 1500...2000 "С, 1000 км - примерно 1700...2500 °С. Предполагается, что глубинные слои Земли за счет распада радиоактивных элементов и химических реакций продолжают медленно - на несколько градусов за 10 млн. лет - нагреваться, в то время как близкие к поверхности слои медленно охлаждаются. Мощность теплового потока, направленного от центра Земли к ее поверхности в 30 раз больше мощности электростанций всех стран мира.

    Существует два качественно различных источника геотермальной энергии: 1) гидротермальные (паротермальные) источники тепла, представляющие собой подземные запасы горячей воды и пара с температурой 100...350 "С; 2) петротермальные источники, представляющие собой тепло сухих горных пород.

    На Камчатке и Курилах, в Японии, Новой Зеландии, Исландии горячая вода и пар выходят на поверхность в виде гейзеров и горячих источников. На Камчатке построено две гидротермальные электростанции - Паужетская и Паратунская мощностью 11000 и 700 кВт соответственно. В других районах воспользоваться теплом подземных вод значительно сложнее, поскольку горячая вода залегает на глубине до 2 км, что требует дополнительных затрат на бурение скважин.

    Для извлечения петротермального тепла предполагается с поверхности Земли пробурить две скважины глубиной несколько километров, чтобы достигнуть горных пород с требуемой температурой. Затем с помощью местного взрыва скважины соединяют. Далее останется только закачивать в одну скважину холодную воду, а из другой получать воду, нагретую подземным теплом.

    Чтобы нагреть воду таким путем скважины должны быть сверхглубокими. Это дорого и пока невыгодно. Поэтому специалисты ищут так называемые термоаномальные площади, где температура пород через каждые 100 м повышается на 30...40 °С.

    В 2000 году геотермальные станции мира дали 50 млрд. кВт-ч электроэнергии. Хотя такие станции имеются в Италии, Новой Зеландии, Японии, Исландии, Китае, Мексике, но примерно половина всех ГеоТЭС расположена на территории США. Американские ГеоТЭС имеют наибольшую суммарную установленную мощность, однако даже самые крупные из них невелики (менее 40 МВт).

    Энергия приливов и отливов

    Как известно, морские приливы и отливы - следствие воздействия на океаны и моря лунного и солнечного притяжения. Приливы и отливы происходят два раза в сутки. Обычно максимальное поднятие воды над ее минимальным уровнем в открытом океане составляет около 1 м. Но в некоторых местах этот перепад значительно больше: на атлантическом побережье Канады - до 18 м, в проливе Ла-Манш -до 15м, на побережье Охотского моря - до 13 м.

    С давних пор люди использовали энергию приливов и отливов, сооружая мельницы и лесопилки, приводимые в движение водой. В XX веке родилась идея приливных электростанций (ПЭС).

    В 1966 г. во Франции на берегу Ла-Манша была построена ПЭС «Ране» мощностью 240 тыс. кВт. Конструктивно она представляла собой бассейн, отделенный от моря плотиной, в теле которой установлен горизонтально расположенный гидрогенератор. Вода вращала его турбину, перетекая во время прилива из моря в бассейн, а во время отлива - обратно.

    По аналогичному принципу в 1968 г. на Баренцевом море была построена Кислогубская ПЭС мощностью 800 кВт. Но в отличие от ПЭС «Ране» она подключена к общей энергосистеме вместе с традиционными электростанциями, что позволило устранить неравномерность подачи электроэнергии потребителям.

    К сожалению, стоимость строительства ПЭС значительно выше, чем обычной гидроэлектростанции такой же мощности. Кроме того, на земном шаре очень мало (менее 30) мест, где строить ПЭС технически целесообразно (перепад высот во время прилива и отлива должен быть не менее 10 м).

    Поэтому ПЭС не могут решить проблемы энергетики кардинально. Но в экономическое развитие регионов и стран, чье побережье омывают моря, они способны внести определенный вклад. Это относится, в частности, к северным и дальневосточным районам России. Так, ПЭС мощностью 40 тыс. кВт планируется построить на Кольском полуострове. Предполагается, что плотинами с ПЭС будут перекрыты большие заливы - Мезенский в Белом море и Пенжинс-кий - в Охотском.

    Энергия рек

    Принцип работы гидроэлектростанций (ГЭС) хорошо известен: вода с верхнего бьефа по каналам в теле плотины подается к лопастям гидравлических турбин; при этом потенциальная энергия положения преобразуется сначала в кинетическую энергию струи воды, затем в механическую энергию вращения турбин и далее - в электроэнергию.

    Возобновляемость гидроэнергии обусловлена тем, что она также имеет солнечное происхождение, поскольку вода совершает свой круговорот в природе благодаря Солнцу.

    Общие запасы гидроэнергии на Земле составляют около 10 млрд. т условного топлива в год, т.е. приблизительно равны мировому энергопотреблению.

    Ресурсы гидроэнергии в России эквивалентны 1 млрд. т условного топлива в год и составляют около 10 % мировых. В нашей стране находятся крупнейшие в мире ГЭС: Братская на р. Ангаре (мощность 4,5 млн. кВт), Красноярская (6 млн. кВт) и Саяно-Шушенская (6,4 млн. кВт) на р. Енисее.

    Однако строительство ГЭС приводит к отрицательным последствиям экологического характера - затоплению сельскохозяйственных земель и лесных угодий, резкому изменению условий существования ихтиофауны и даже изменению климата прилегающих территорий.

    Энергия атомного ядра

    Освобождение и использование ядерной энергии - одно из наиболее крупных событий XX века. К сожалению, первоначально это открытие было использовано в военных целях.

    Первая в мире атомная электростанция (АЭС) мощностью 5 тыс. кВт была построена в 1954 г. в г. Обнинске Московской области. В 1960 г. в мире было 7 АЭС, а в 1976 г. их число достигло 130. В 1975 г. на атомных электростанциях было выработано 5 % мирового производства электроэнергии.

    Привлекательность ядерной энергетики связана с тем, что обогащенный природный уран и искусственно получаемый плутоний заменяют огромное количество традиционного топлива: 1 г ядерного топлива эквивалентен примерно 2,7 т условного топлива.

    До последнего времени атомная энергетика развивалась высокими темпами. Установленная мощность АЭС в мире составляла: в 1975 г. - 71,3 млн. кВт, в 1980 г. - 130,0 млн. кВт, в 1985 г. - 245,1 млн. кВт. Однако авария на Чернобыльской АЭС в апреле 1986 г. серьезно подорвала веру в безопасность ядерной энергетики и, соответственно, привела к частичному свертыванию программ строительства новых АЭС.

    Энергия угля

    Большая часть всех ресурсов угля на Земле сосредоточена севернее 30 градусов северной широты, причем 75 % мировых ресурсов находятся в недрах трех государств - России, США и Китая.

    Уголь широко применялся в энергетике вплоть до второй половины XX века. О динамике роста его потребления говорят следующие цифры. В XIX столетии в мире было добыто 17,8 млрд. т угля, а за последующие 70 лет - 103,5 млрд. т. Существенно расширилась и география добычи этого энергоносителя. Если в период с 1801 по 1810 гг. уголь добывали лишь в пяти странах мира, а с 1841 по 1951 гг. - в восьми, то с 1961 по 1970 гг. - в 54-х. Только с 50-х годов XX в. в энергетическом балансе почти всех стран мира началось сокращение доли угля. Освобождающуюся нишу заняли нефть и газ - более дешевые и эффективные энергоносители.

    Вместе с тем, по данным Американской Национальной Ассоциации по углю при сохранении нынешних темпов потребления к 2000 г. будет израсходовано лишь 2 % мировых ресурсов угля. Таким образом, уголь можно назвать топливом XXI века.

    Перспективы использования угля связаны с его открытой (бесшахтной) добычей, применением газификации углей, получением из угля жидких синтетических топлив. Однако пока энергия угля обходится дороже, чем энергия нефти и газа.

    Энергия нефти и газа

    Преимущества нефти и газа перед другими источниками энергии заключаются в относительно высокой теплоте сгорания и в простоте использования с технологической точки зрения.

    Так, при полном сгорании 1 кг нефти выделяется 46 МДж тепла, 1 м3 природного газа 36 МДж, 1 кг антрацита 34 МДж, 1 кг бурого угля - 9,3 МДж, 1 кг дров - 10,5 МДж. Если массу нефти принять за единицу, то для получения эквивалентного количества тепла масса антрацита должна составить 1,4; бурого угля - 5,0; дров - 4,4. Аналогичным достоинством обладает газ. Это дает огромные преимущества при транспортировке.

    Теперь сравним различные энергоносители с точки зрения технологичности. Нефть и газ транспортируются, в основном, по трубопроводам, работающим в любое время года и суток. Чтобы перекачать нефть (газ), а затем подать ее (его) в топку, достаточно включить насос (компрессор), а порой просто открыть задвижку (кран). Транспортировка же твердого топлива требует обязательного проведения погрузочно- разгрузочных работ. Движение транспортных средств с углем, как правило, связано с простоями (при погрузке-разгрузке, заносах и т.д.). Загрузка твердых топлив в топку очень часто связана с большими затратами ручного труда.

    Применение газа вместо угля дает большую экономию времени и средств, улучшает условия труда, а также санитарное состояние городов, жилых домов и предприятий. Поэтому в настоящее время почти все тепловые станции Урала и Европейской части России переведены на газ. проводится большая работа по газификации малых городов и сел.

    Пик добычи нефти (4,06 млрд. т/год) ожидается в 2020 г., после чего ожидается период ее стабилизации. Ресурсы газа значительно более велики. Их хватит на несколько сот лет.

    Таким образом, нефть и газ в ближайшей перспективе останутся основными источниками энергии для человечества.
    1   2   3   4   5   6   7   8   9   ...   88


    написать администратору сайта