Главная страница

ЛОГИКА (учебник Кириллов А.+Старченко А.). ЛОГИКА (учебник Кириллов А.+Старченко А. Учебник для юридических вузов. Авторы В. И. Кириллов гл. I, 1, 2, 3, 5


Скачать 0.89 Mb.
НазваниеУчебник для юридических вузов. Авторы В. И. Кириллов гл. I, 1, 2, 3, 5
АнкорЛОГИКА (учебник Кириллов А.+Старченко А.).docx
Дата28.01.2017
Размер0.89 Mb.
Формат файлаdocx
Имя файлаЛОГИКА (учебник Кириллов А.+Старченко А.).docx
ТипУчебник
#894
страница9 из 18
1   ...   5   6   7   8   9   10   11   12   ...   18
§1. Умозаключение как форма мышления. Виды умозаключений

В процессе познания действительности мы приобретаем новые знания. Некоторые из них — непосредственно, в результате воздействия предметов внешнего мира на органы чувств. Но большую часть знаний мы получаем путем выведения новых знаний из знаний уже имеющихся. Эти знания называются опосредствованными, или выводными.

Логической формой получения выводных знаний является умозаключение.

Умозаключение — это форма мышления, посредством которой из одного или нескольких суждений выводится новое суждение.

Любое умозаключение состоит из посылок, заключения и вывода. Посылками умозаключения называют исходные суждения, из которых выводится новое суждение. Заключением называется новое суждение, полученное логическим путем из посылок. Логический переход от посылок к заключению называется выводом.

Например: «Судья не может участвовать в рассмотрении дела, если он является потерпевшим (1). Судья Н. — потерпевший (2). Значит, судья Н. не может участвовать в рассмотрении дела (3)».

В этом умозаключении 1-е и 2-е суждения являются посылками, 3-е суждение — заключением.

При анализе умозаключения посылки и заключение принято записывать отдельно, располагая их друг под другом. Заключение записывают под горизонтальной чертой, отделяющей его от посылок и обозначающей логическое следование. Слова «следовательно» и близкие ему по смыслу («значит», «поэтому» и т.п.) под чертой обычно не пишутся. В соответствии с этим приведенный пример примет следующий вид:

Судья не может участвовать в рассмотрении дела, если он является

потерпевшим.

Судья Н. — потерпевший

Судья Н. не может участвовать в рассмотрении дела.

Отношение логического следования между посылками и заключением предполагает связь между посылками по содержанию. Если суждения не связаны по содержанию, то вывод из них невозможен. Например, из суждений: «Судья не может участвовать в рассмотрении дела, если он является потерпевшим» и «Обвиняемый имеет право на защиту» нельзя получить заключения, так как эти суждения не имеют общего содержания и, следовательно, логически не связаны друг с другом.

При наличии содержательной связи между посылками мы можем получить в процессе рассуждения новое истинное знание при соблюдении двух условий: во-первых, исходные суждения — посылки умозаключения должны быть истинными; во-вторых, в процессе рассуждения следует соблюдать правила вывода, которые обусловливают логическую правильность умозаключения.

Умозаключения делятся на следующие виды.

1. В зависимости от строгости правил вывода различают демонстративные (необходимые) и недемонстративные(правдоподобные) умозаключения. Демонстративные умозаключения характеризуются тем, что заключение в них с необходимостью следует из посылок, т.е. логическое следование в такого рода выводах представляет собой логический закон. В недемонстративных умозаключениях правила вывода обеспечивают лишь вероятностное следование заключения из посылок.

2. Важное значение имеет классификация умозаключений по направленности логического следования, т.е. по характеру связи между знанием различной степени общности, выраженному в посылках и заключении. С этой точки зрения различают три вида умозаключений: дедуктивные(от общего знания к частному), индуктивные(от частного знания к общему), умозаключения по аналогии(от частного знания к частному).

Эта классификация будет положена в основу дальнейшего изложения.

Рассмотрим дедуктивные умозаключения.

Дедуктивными(от латинского deductio — «выведение») называется умозаключение, в котором переход от общего знания к частному является логически необходимым.

Правила дедуктивного вывода определяются характером посылок, которые могут быть простыми (категорическими) или сложными суждениями. В зависимости от количества посылок дедуктивные выводы из категорических суждений делятся на непосредственные, в которых заключение выводится из одной посылки, и опосредствованные, в которых заключение выводится из двух посылок.

 

 

 

§ 2. Непосредственные умозаключения

Суждение, содержащее новое знание, может быть получено посредством преобразования некоторого суждения. Так как исходное (преобразуемое) суждение рассматривается как посылка, а суждение, полученное в результате преобразования, — как заключение, умозаключения, построенные посредством преобразования суждений, называются непосредственными. К ним относятся: 1) превращение, 2) обращение, 3) противопоставление предикату, 4)умозаключения по логическому квадрату.

Выводы в каждом из этих умозаключений получаются в соответствии с логическими правилами, которые обусловлены видом суждения — его количественными и качественными характеристиками.

1. Превращение.

Преобразование суждения в суждение, противоположное по качеству с предикатом, противоречащим предикату исходного суждения, называется превращением. Превращение опирается на правило: двойное отрицание равносильно утверждению:  р р.

Превращать можно общеутвердительные, общеотрицательные, частноутвердительные и частноотрицательные суждения.

Общеутвердительное суждение (А) превращается в общеотрицательное (Е).Например: «Все сотрудники нашего коллектива — квалифицированные специалисты. Следовательно, ни один сотрудник нашего коллектива не является неквалифицированным специалистом».

Схема превращения суждения  А:

Все S суть Р

Ни одно S не есть не-Р

Общеотрицательное суждение (Е) превращается в общеутвердительное (А).Например: «Ни одно религиозное учение не является научным. Следовательно, всякое религиозное учение является ненаучным».

Схема превращения суждения Е:

Ни одно S не есть Р Все S суть не-Р

Частноутвердительное суждение (I) превращается в частно-отрицательное (О). Например: «Некоторые государства являются федеративными. Следовательно, некоторые государства не являются нефедеративными».

Схема превращения суждения I:

Некоторые S суть Р

Некоторые S не суть не-Р

Частноотрицательное суждение (О) превращается в частно-утвердительное (I). Например: «Некоторые преступления не являются умышленными. Следовательно, некоторые преступления являются неумышленными».

Схема превращения суждения О:

Некоторые S не суть Р Некоторые S суть не-Р

Таким образом, чтобы превратить суждение, нужно заменить его связку на противоположную, а предикат — на понятие, противоречащее предикату исходного суждения. Суждение, полученное посредством превращения, сохраняет количество, но изменяет качество исходного суждения. Субъект исходного суждения не изменяется.

Заключения, полученные посредством превращения, уточняют наши знания. Устанавливая отношения между субъектом и понятием, противоречащим предикату исходного суждения, мы рассматриваем предмет суждения с новой стороны, фиксируя внимание на свойстве, не совместимом со свойством, выраженным в предикате исходного суждения. В этом смысл превращения. Поэтому заключения, полученные с помощью этой логической операции, содержат некоторые новые знания о предмете.

2. Обращение.

Преобразование суждения, в результате которого субъект исходного суждения становится предикатом, а предикат — субъектом заключения, называется обращением.

Обращение подчиняется правилу: термин, не распределенный в посылке, не может быть распределен в заключении.

Различают простое (чистое) обращение и обращение с ограничением.

Простым, или чистым, называется обращение без изменения количества суждения. Так обращаются суждения, оба термина которых распределены или оба не распределены. Если же предикат исходного суждения не распределен, то он не будет распределен и в заключении, где он становится субъектом. Поэтому его объем ограничивается. Такое обращение называется обращением с ограничением.

Общеутвердительное суждение (А) обращается в частноутве-дительное (I), т.е. с ограничением. Например: «Все студенты нашей группы (S+) сдали экзамены (Р-). Следовательно, некоторые сдавшие экзамены (Р-) — студенты нашей группы (S-)». В исходном суждении предикат не распределен, поэтому он, становясь субъектом заключения, также не распределен. Его объем ограничивается («некоторые сдавшие экзамены»).

Схема обращения суждения  А:

Все S суть Р Некоторые Р суть S

Общеутвердительные выделяющие суждения (в них предикат распределен) обращаются без ограничения по схеме:

Все S, и только S, суть Р Все Р суть S

Общеотрицательное суждение (Е)обращается в общеотрицательное (Е),т.е. без ограничения. Например: «Ни один студент нашей группы (S+) не является неуспевающим (Р+). Следовательно, ни один неуспевающий (Р+) не является студентом нашей группы (S+)». Простое обращение этого суждения возможно потому, что его предикат («неуспевающие») распределен. Схема обращения суждения Е:

Ни одно S не есть Р Ни одно Р не есть S

Частноутвердительное суждение (I)обращается в частноутвердительное (I).Это простое (чистое) обращение. Предикат, не распределенный в исходном суждении, не распределен и в заключении. Количество суждения не изменяется. Например: «Некоторые студенты нашей группы (S-) — отличники (Р-). Следовательно, некоторые отличники (Р-) — студенты нашей группы (S-). Схема обращения суждения I:

Некоторые S суть Р Некоторые Р суть S

Частноутвердительное выделяющее суждение (предикат распределен) обращается в общеутвердительное. Например: «Некоторые общественно опасные деяния (S-) являются преступлениями против правосудия (Р+). Следовательно, все преступления против правосудия (Р+) являются общественно опасными деяниями (S-)».

Эти суждения обращаются по схеме:

Некоторые S, и только S, суть Р Все Р суть S

Частноотрицательное суждение (О) не обращается.

Таким образом, обращение суждения не ведет к изменению его качества. Что касается количества, то оно может изменяться (обращение с ограничением), но может оставаться тем же самым (простое, или чистое, обращение).

Умозаключения посредством обращения играют важную роль в процессе рассуждения. Благодаря тому, что предметом нашей мысли становится предмет, выраженный предикатом исходного суждения, мы уточняем наши знания, придаем им большую определенность. Необходимо, однако, строго соблюдать правила ограничения, нарушение которых ведет к ошибкам в рассуждении. Нельзя, например, общеутвердительное суждение, в котором предикат не распределен, обращать без ограничения, нельзя обращать с ограничением частноутвердительное выделяющее суждение с распределенным предикатом. Так, из суждения «Все студенты юридических вузов изучают логику» следует заключение: «Некоторые изучающие логику — студенты юридических вузов»; из суждения «Некоторые врачи — хирурги» следует: «Все хирурги — врачи».

3. Противопоставление предикату.

Преобразование суждения, в результате которого субъектом становится понятие, противоречащее предикату, а предикатом — субъект исходного суждения, называется противопоставлением предикату.

Противопоставление предикату может рассматриваться как результат превращения и обращения: превращая исходное суждение S — Р, устанавливаем отношение S к не-Р; суждение, полученное путем превращения, обращается, в результате устанавливается отношение не-Р к S.

Заключение, полученное посредством противопоставления предикату, зависит от количества и качества исходного суждения.

Общеутвердительное суждение (А) преобразуется в общеотрицательное (Е).Например: «Все адвокаты имеют юридическое образование. Следовательно, ни один, не имеющий юридического образования, не является адвокатом».

Схема противопоставления предикату суждения  А:

___Все S суть Р___

Ни одно не-Р не есть S

Правильность полученного заключения можно проверить путем последовательного применения двух логических операций: превращения и обращения. Исходное общеутвердительное суждение «Все S суть Р» превращается в общеотрицательное с отрицательным предикатом «Ни одно S не есть не-Р». Общеотрцицательное суждение обращается без ограничения. Получаем общеотрицательное суждение «Ни одно не-Р не есть S».

Общеотрицательное суждение (Е) преобразуется в частноутвердительное (I).Например: «Ни одно промышленное предприятие нашего города не является убыточным. Следовательно, некоторые неубыточные предприятия являются промышленными предприятиями нашего города».

Схема противопоставления предикату суждения Е:

Ни одно S не есть Р Некоторые не-Р суть S

Проверим правильность заключения с помощью превращения и обращения. Исходное общеотрицательное суждение «Ни одно S не есть Р» превращается в общеутвердительное с отрицательным предикатом «Все S суть не-Р». Так как предикат общеутвердительного суждения не распределен, его обращение дает частноутвердитель-ное суждение «Некоторые не-Р суть S».

Частноутвердительное суждение (I) посредством противопоставления предикату не преобразуется. Превращение суждения «Некоторые S суть Р» дает частноотрицательное суждение «Некоторые S не суть не-Р». Но частноотрицательное суждение не обращается.

Частноотрицательное суждение (О) преобразуется в частноутвердительное (I).Например: «Некоторые свидетели не являются совершеннолетними. Следовательно, некоторые несовершеннолетние являются свидетелями».

Схема противопоставления предикату суждения  О:

Некоторые S не суть Р Некоторые не-Р суть S

Проверим правильность заключения посредством превращения и обращения. Частноотрицательное суждение «Некоторые S не суть Р» превращается в частноутвердительное «Некоторые S суть не-Р», которое обращается также в частноутвердительное «Некоторые не-Р суть S».

Значение умозаключений посредством противопоставления предикату состоит в том, что в них выясняется отношение предметов, не входящих в объем предиката, к предметам, отраженным субъектом исходного суждения. Устанавливая отношение между этими предметами, мы уточняем наши знания, высказываем нечто новое, что не было в явной форме выражено в исходном суждении.

4. Умозаключения по логическому квадрату.

Учитывая свойства отношений между категорическими суждениями А, Е, I, О, которые иллюстрированы схемой логического квадрата1, можно строить выводы, устанавливая следование истинности или ложности одного суждения из истинности или ложности другого суждения.

Рассмотрим эти выводы.

Отношение противоречия (контрадикторности): А — О, Е — I.

Поскольку отношения между противоречащими суждениями подчиняются закону исключенного третьего, из истинности одного суждения следует ложность другого суждения, из ложности одного — истинность другого. Например, из истинности общеутвердительного суждения (А) «Все народы имеют право на самоопределение» следует ложность частноотрицательного суждения (О) «Некоторые народы не имеют права на самоопределение»; из истинности частноутвердительного суждения (I) «Некоторые приговоры суда являются оправдательными» следует ложность общеотрицательного суждения (Е) «Ни один приговор суда не является оправдательным».

Выводы строятся по схемам:

А  О; А О; Е I; Е I.

Отношение противоположности (контрарности): А — Е. Из

истинности одного суждения следует ложность другого суждения, но из ложности одного из них не следует истинность другого. Например, из истинности общеутвердительного суждения (А) «Все народы имеют право на самоопределение» следует ложность общеотрицательного суждения (Е) «Ни один народ не имеет права на самоопределение». Но из ложности суждения А «Все приговоры суда являются оправдательными» не следует истинность суждения Е «Ни один приговор суда не является оправдательным». Это суждение также ложно.

Отношения между противоположными суждениями подчиняются закону непротиворечия. Выводы строятся по схемам: А Е; Е  А;  Аv Е); Еv А).

Отношение частичной совместимости  (субконтрарности):

I — О. Из ложности одного суждения следует истинность другого, но из истинности одного из них может следовать как истинность, так и ложность другого суждения. Истинными могут быть оба суждения. Например, из ложного суждения «Некоторые врачи не имеют медицинского образования» следует истинное суждение «Некоторые врачи имеют медицинское образование»[29], из истинного суждения «Некоторые свидетели допрошены» следует суждение «Некоторые свидетели не допрошены», которое может быть как истинным, так и ложным.

Таким образом, субконтрарные суждения не могут быть вместе ложными; по крайней мере одно из них истинно.

Выводы строятся по схемам: I О; О I; I vО); O(I v I ).

Отношение подчинения (А — I, E — О). Из истинности подчиняющего суждения следует истинность подчиненного суждения, но не наоборот: из истинности подчиненного суждения истинность подчиняющего суждения не следует, оно может быть истинным, но может быть ложным. Например, из истинности подчиняющего суждения А «Все врачи имеют медицинское образование» следует истинность подчиненного ему суждения I «Некоторые врачи имеют медицинское образование». Из истинного подчиненного суждения «Некоторые свидетели допрошены» нельзя с необходимостью утверждать об истинности подчиняющего суждения «Все свидетели допрошены».

Выводы строятся по схемам: А I; Е О; I (A v A); O(E vE).

Из ложности подчиненного суждения следует ложность подчиняющего суждения, но не наоборот: из ложности подчиняющего суждения ложность подчиненного с необходимостью не следует; оно может быть истинным, но может быть и ложным. Например, из ложности подчиненного суждения (О) «Некоторые народы не имеют права на самоопределение» следует ложность подчиняющего суждения (Е) «Ни один народ не имеет права на самоопределение». Если ложным является подчиняющее суждение (А) «Все свидетели допрошены», то подчиненное ему суждение (I) «Некоторые свидетели допрошены» может быть истинным, но может быть ложным (возможно, что ни один свидетель не допрошен).

Выводы строятся по схемам: I  А; О Е;  A (I v I);  Е(О v  О);

Знание зависимости истинности или ложности одних суждений от истинности или ложности других помогает делать правильные выводы в процессе рассуждения.

Умозаключения по логическому квадрату находят применение во многих мыслительных приемах и операциях, в том числе в аргументации, где построение некоторых способов косвенного доказательства и косвенного опровержения опирается на отношения противоречия.

1   ...   5   6   7   8   9   10   11   12   ...   18


написать администратору сайта