Главная страница

Пособие по нормальной физиологии. Учебное по собие СанктПетербург


Скачать 2.01 Mb.
НазваниеУчебное по собие СанктПетербург
АнкорПособие по нормальной физиологии.doc
Дата12.05.2017
Размер2.01 Mb.
Формат файлаdoc
Имя файлаПособие по нормальной физиологии.doc
ТипДокументы
#7456
страница8 из 12
1   ...   4   5   6   7   8   9   10   11   12

8.2.4. Двигательные расстройства, нарушения тонуса.


Мышечный тонус - это степень упругости мышц и то сопротивление, которое возникает при пассивном сгибании или разгибании конечности. Во время исследования тонуса мышц пациент не должен их напрягать, руку или ногу сгибает врач. В норме, даже будучи расслабленной, мышца находится в состоянии некоторого напряжения.

Атония - утрата нормального тонуса мышц при истощении, периферических параличах, может быть врожденной. Гипотония - снижение тонуса мышц, а гипертонус – соответственно, его повышение. Гипертонус может развиваться при центральных параличах – после инсультов, при рассеянном склерозе, детском церебральном параличе. Характерная поза больных детским церебральным параличом (ноги согнуты в коленях, опираются на цыпочки, руки приведены к туловищу, пальцы сжаты в кулаки) обусловлена как раз повышенным мышечным тонусом. Такая вычурная поза вызвана повышением тонуса мышц-сгибателей конечностей. Другое проявление повышенного тонуса мышц – их ригидность (мышцы настолько напряжены, что становятся твердыми). При восковидной ригидности (каталепсии), которая может встречаться при шизофрении, истерии, паркинсонизме, тонус мышц постоянно повышен. Если к такому больному подойти и поднять его руку или ногу, они надолго застывают в таком положении, как будто вылеплены из воска. Позу, которую принимают эти больные, иногда называют «позой манекена». Таким больным вообще свойственно принимать неудобные позы. К восковидной ригидности относится и «симптом воздушной подушки» - находясь в постели, больные подолгу держат голову над подушкой так, что под головой имеется пространство. Повышение тонуса мышц может быть вызвано сильной болью, так напрягаются мышцы спины при болях во время обострения остеохондроза, мышцы затылка – при менингите.

Сила мышц, то есть их способность сокращаться, преодолевая определенную нагрузку, - важный показатель состояния здоровья. Недостаточная их сила, вызванная заболеванием нервов и мышц, последствиями длительного постельного режима или возрастом пожилого человека мешает делать работу по дому, выполнять профессиональные обязанности. Силу мышц принято выражать в балах. 5 балов – с мышцами все в порядке, если больной набирает от 1 до 4 балов – сила мышц снижена (парез), 0 балов – мышцы не сокращаются совсем (паралич). По своей распространенности параличи делятся на моноплегии (парализована одна конечность), гемиплегии (паралич одной половины тела), параплегии (паралич двух симметричных конечностей, верхних или нижних), тетраплегии (парализованы все четыре конечности).

С судорогами, внезапными непроизвольными сокращениями мышц, наверное, приходилось сталкиваться каждому. Они могут возникать при переохлаждении, недостатке кальция в организме, а также при таких серьезных заболеваниях, как эпилепсия, эклампсия (сильный токсикоз беременных), столбняк и бешенство.

Мышечный спазм - непроизвольное тоническое сокращение одной или нескольких мышц, сохраняющееся некоторое время.

Среди двигательных расстройств выделяют гиперкинезы – непроизвольные (совершающиеся независимо от воли, сознания) движения, возникающие при заболеваниях нервной системы. Обычно гиперкинезы усиливаются при волнении и уменьшающиеся при отвлечении внимания, в покое. Во сне они, как правило, исчезают. К гиперкинезам относят , например, тремор, тик.

Дистония – тип непроизвольного насильственного движения (усилием воли с ним не справиться), вызванного медленным сокращением мышц конечностей, туловища, шеи, лица.

При хорее различные группы мышц быстро и беспорядочно сокращаются. Человек с хореей производит впечатление паясничающего, хотя кривляется он не специально, он ничего не может с собой поделать.

Баллизм – крупноразмашистые, насильственные, "бросковые" движения конечностей, производимые с большой силой.

Тики– это быстрые, повторяющиеся, отрывистые движения в отдельных группах мышц, которые могут быть беспорядочными или имитировать целенаправленные движения (например, движение шеи и головы "при тесном воротничке", мигание, нахмуривание, облизывание, жевание).

Миоклонии– молниеносные, непроизвольные сокращения отдельных мышц и мышечных групп. В норме миоклонии наблюдаются во сне у всех или почти у всех здоровых людей. Они также могут появляться при нейроинфекциях, при травмах головного мозга и интоксикациях. Иногда миоклонии передаются по наследству.

Глава 9. Возбудимость тканей

9.1. Биоэлектрические явления в живых тканях
Организм человека обладает выраженной способностью адаптироваться к постоянно меняющимся условиям внешней среды. В основе приспособительных реакций организма лежит универсальное свойство живой ткани – раздражимость – способность отвечать на действие раздражающих факторов изменением структурных и функциональных свойств. Раздражимостью обладают все ткани животных и растительных организмов. В процессе эволюции происходило постепенное дифференциация тканей, осуществляющих приспособительную деятельность организма. Раздражимость этих тканей достигло наивысшего развития и трансформировалась в новое свойство – возбудимость. Под этим термином понимают способность ткани отвечать на раздражение специализированной реакцией – возбуждением. Возбуждение – это сложный биологический процесс, который характеризуется специфическим изменением процессов обмена веществ, теплообразования, временной деполяризацией мембраны клеток и проявляющийся специализированной реакцией ткани (сокращение мышцы, отделение секрета железой и т.д.). Возбудимостью обладают нервная, мышечная и секреторная ткани, их объединяют в понятие «возбудимые ткани». Возбудимость различных тканей неодинакова. Мерой возбудимости является порог раздражения – минимальная сила раздражителя, которая способна вызвать возбуждение. Менее сильные раздражители называются подпороговыми, а более сильные – сверхпороговыми. Раздражителем живой клетки может быть любое изменение внешней или внутренней среды, если оно достаточно велико, возникло достаточно быстро и продолжается достаточно долго.
Классификация раздражителей.

Все раздражители по их природе можно разделить на 3 группы:

1. Физические (механические, температурные, звуковые, световые, электрические);

2. Химические (щёлочи, кислоты, гормоны, продукты обмена веществ и др.);

3. Физико-химические (изменение осмотического давления, pH – среды, ионного состава и др.).

По степени приспособленности биологических структур к их восприятию раздражители делятся на адекватные и неадекватные.

Адекватными называются раздражители, к восприятию которых биологическая структура специально приспособлена в процессе эволюции. Например, адекватным раздражителем для фоторецепторов является видимый свет, для барорецепторов – изменение давления, для скелетной мышцы – нервный импульс и т.д.

Неадекватными называются такие раздражители, которые действуют на структуру, специально неприспособленную для их восприятия. Например, адекватным раздражителем для скелетной мышцы является нервный импульс, но мышца может возбуждаться и при воздействии электрического тока, механического удара и др. Все эти раздражители для скелетной мышцы являются неадекватными и их пороговая сила в сотни и более раз превышает пороговую силу адекватного раздражителя.
Природа возбуждения. Первые попытки последовательной разработки учения о «животном электричестве» связаны с именем Л. Гальвани. Он обратил внимание на сокращение мышц препарата задних лапок лягушки, подвешенного на медном крючке, при прикосновении лапок к железным перилам балкона. На основании этих наблюдений Л. Гальвани пришёл к выводу, что сокращение мышц лапок вызвано «животным электричеством», которое возникает в спинном мозге и передаётся по металлическим проводникам к мышцам лапки. Этот опыт в настоящее время известен как первый опыт Гальвани.

Физик Вольт, повторив первый опыт Гальвани, пришёл к заключению, что описанные явления нельзя считать обусловленными наличием «животного электричества». Источником тока, по мнению Вольта является не спинной мозг, как полагал Л.Гальвани, а разность потенциалов, образующаяся в месте контакта разнородных металлов – меди и железа. В ответ на эти возражения Л.Гальвани усовершенствовал опыт, исключив из него металлы. Он препарировал седалищный нерв вдоль бедра лапки лягушки, затем набрасывал нерв на мышцы голени – возникало сокращение мышцы. Этот опыт известен как второй опыт Гальвани.

Позже было замечено, что сокращение мышцы во втором опыте Гальвани возникает, если нерв одновременно соприкасается с повреждённой и неповреждённой поверхностями мышцы. Дюбуа-Реймоном было установлено, что повреждённый участок мышцы несёт отрицательный заряд, а неповреждённый участок – положительный. При набрасывании нерва на повреждённый и неповреждённый участки мышцы возникает ток, который раздражает нерв и вызывает сокращение мышцы. Этот ток был назван током покоя или током повреждения.

Дюбуа-Реймон впервые показал, что наружная поверхность мышцы заряжена положительно по отношению к её внутреннему содержимому. В состоянии покоя между наружной и внутренней поверхностями мембраны клетки существует разность потенциалов, которая была названа мембранным потенциалом покоя или мембранным потенциалом. Его величина у разных клеток колеблется от 60 до 90 мВ.

Было разработано несколько теорий возникновения и поддержания мембранного потенциала покоя. Согласно этой теории мембранный потенциал покоя (МПП) обусловлен неодинаковой концентрацией ионов натрия, калия, кальция, хлора внутри клетки и во внеклеточной жидкости, а также неодинаковой проницаемостью для этих ионов поверхностной мембраны клетки. Цитоплазма нервных и мышечных клеток содержит в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем внеклеточная жидкость. Следовательно, в состоянии покоя существует асимметрия концентрации ионов внутри клетки и в окружающей её среде.

Клетку ограничивает тончайшая оболочка – мембрана. В состав мембраны входят липиды (в основном фосфолипиды), белки и мукополисахариды. Согласно жидкостно-мозаичной модели мембраны она состоит из бимолекулярного слоя фосфолипидов, в который включены белки. Одни белки пронизывают мембрану насквозь, а другие погружены в её толщу. В мембране имеются ионные каналы, образованные макромолекулами белка, пронизывающих липидный слой. Каналы мембраны делятся на неспецифические (каналы утечки) и специфические (селективные, обладающие способностью пропускать только определённые ионы). Неспецифические каналы пропускают различные ионы и открыты постоянно. Специфические каналы открываются и закрываются в ответ на изменения МПП. Эти каналы называются потенциалозависимыми.

Селективные потенциалозависимые ионные каналы подразделяются на: натриевые, калиевые, кальциевые, хлорные. Но их селективность часто не абсолютна, а название канала указывает лишь на тот ион, для которого данный канал наиболее проницаем.

Ионный канал состоит из собственно канала (транспортной части) и воротного механизма(«ворот»), который управляется электрическим полем мембраны. В каждом канале предполагают наличие двух типов «ворот»- быстрых активационных (m) и медленных инактивационных (h). «Ворота» могут быть полностью открыты или закрыты. Например, в натриевом канале в состоянии покоя «ворота» m закрыты, а «ворота» h – открыты. При уменьшении заряда мембраны (деполяризации) в начальный момент «ворота» m и h открыты – канал находится в проводящем состоянии. Через открытые инактивационные «ворота» закрываются – канал инактивируется. По мере восстановления инактивационные «ворота» закрываются – канал инактивируется. По мере восстановления МПП инактивационные «ворота» медленно открываются, а активационные быстро закрываются и канал возвращается в исходное состояние.

Мукополисахариды, располагаясь в виде «деревьев» на поверхности мембрана осуществляют рецепторные функции.

В состоянии физиологического покоя мембрана нервных волокон в 25 раз более проницаема для ионов калия, чем для ионов натрия.

Поляризация мембраны при открытых калиевых каналах и наличии трансмембранного градиента концентраций калия, объясняется, прежде всего, утечкой внутриклеточного калия в окружающую клетку среду. Выход положительно заряженных ионов калия приводит к появлению положительного заряда на наружной поверхности мембраны. Органические анионы – крупномолекулярные соединения, которые несут отрицательный заряд, и для которых мембрана клетки непроницаема, придают в этих условиях внутренней поверхности мембраны отрицательный заряд.

В состоянии покоя наблюдаются небольшие потоки ионов калия и натрия через мембрану по их концентрационному градиенту, что в конечном итоге должно было бы привести к выравниванию концентраций этих ионов внутри клетки и в окружающей её среде. Но в живых клетках этого не происходит, т.к. в клеточной мембране существует особый молекулярный механизм, который получил название натрий-калиевого насоса. Он обеспечивает выведение их цитоплазмы клетки ионов натрия и введение в цитоплазму ионов калия. Ионный насос перемещает ионы против их концентрационного градиента, т.е. он работает с затратой энергии.

Т.о., возникновение и поддержание мембранного потенциала покоя обусловлено избирательной проницаемостью мембраны клетки и работой натрий-калиевого насоса. МПП создаёт электрическое поле. Оно обеспечивает закрытое состояние активационных «ворот» натриевых каналов и открытое состояние инактивационных «ворот».

Регистрация электрических потенциалов в нервном и мышечном волокне или в нервной клетке показала, что при возбуждении происходит изменение МПП, возникает потенциал действия. Под влиянием раздражителя пороговой или сверхпороговой величины проницаемость мембраны клетки для ионов натрия возрастает. Ионы натрия устремляются внутрь клетки, что приводит к уменьшению величины МПП – деполяризация мембраны. В начале деполяризация развивается медленно. При уменьшении МПП до критического уровня деполяризации проницаемость мембраны для ионов натрия увеличивается в 500 раз и превышает проницаемость для ионов калия в 20 раз. В результате проникновения ионов натрия в цитоплазму и их взаимодействия с анионами разность потенциалов на мембране исчезает, а затем происходит перезарядка клеточной мембраны (инверсия заряда) – внутренняя поверхность мембраны заряжается положительно по отношению к её наружной. Этот потенциал превышения достигает величины 30-50 мВ, после чего закрываются быстрые натриевые каналы – происходит инактивация натриевой проницаемости и открываются калиевые каналы. Начинается процесс восстановления исходного уровня мембранного потенциала покоя – реполяризация мембраны.

Потенциал действия может быть зарегистрирован двумя способами:

1. Внеклеточным – с помощью электродов, приложенных к внешней поверхности клетки;

2. Внутриклеточным – с помощью электродов, один из которых введён внутрь клетки, а другой расположен на её поверхности.
9.2. Законы раздражения возбудимых тканей

Законы раздражения отражают определённую зависимость между действием раздражителя и ответной реакцией возбудимой ткани. К законам раздражения относятся:

Закон силы: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционируют сложные структуры, например, скелетная мышца. Амплитуда её сокращений от минимальных (пороговых) величин постепенно увеличивается с увеличением силы раздражителя до субмаксимальных и максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость. Поэтому на пороговые раздражители отвечают только те мышечные волокна, которые имеют самую высокую возбудимость, амплитуда мышечного сокращения при этом минимальна. C увеличением силы раздражителя в реакцию вовлекается всё большее количество мышечных волокон, и амплитуда сокращения мышцы всё время увеличивается. Когда в реакцию вовлечены все мышечные волокна, составляющие данную мышцу, дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения.

Закон «всё или ничего»: подпороговые раздражители не вызывают ответной реакции («ничего»), на пороговые раздражители возникает максимальная ответная реакция («всё»). По этому закону сокращаются сердечная мышца и одиночное мышечное волокно. Закон «всё или ничего» не абсолютен. На раздражители подпороговой силы не возникает видимой ответной реакции, но в ткани происходят изменения МПП в виде возникновения местного возбуждения (локального ответа). Сердечная мышца, растянутая кровью, при наполнении камер сердца, реагирует по закону «всё или ничего», но амплитуда сокращения будет больше по сравнению с сокращением сердечной мышцы, не растянутой кровью.

Закон раздражения Дюбуа-Реймона (аккомодации): раздражающее действие постоянного тока зависит не только от абсолютной величины силы тока или его плотности, но и от скорости нарастания тока во времени. При действии медленно нарастающего раздражителя возбуждение не возникает, т.к. происходит приспосабливание возбудимой ткани к действию этого раздражителя, что получило название аккомодации. Она обусловлена тем, что при действии медленно нарастающего раздражителя в мембране возбудимой ткани происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения потенциал действия (ПД) вообще не возникает. Способность к аккомодации различных структур неодинакова. Наиболее высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.

Закон силы – длительности: раздражающее действие постоянного тока зависит не только от величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать для возникновения возбуждения.

Исследования зависимости силы – длительности показали, что последняя имеет гиперболический характер. Из этого следует, что ток ниже некоторой минимальной величины не вызывает возбуждение, как бы длительно он не действовал, и чем короче импульсы тока, тем меньшую раздражающую способность они имеют. Причиной такой зависимости является мембранная ёмкость. Очень «короткие» токи просто не успевают разрядить эту ёмкость до критического уровня деполяризации. Минимальная величина тока, способная вызвать возбуждение при неограниченном его действии, называется реобазой.


Рис. 9.1. Закон «сила- длительность».

9.3. Физиология нервов и нервных волокон
Нервные волокна (отростки нервных клеток) выполняют специализированную функцию – проведение нервных импульсов. По морфологическому признаку нервные волокна делятся на миелиновые (покрытые миелиновой оболочкой) и безмиелиновые. Нервные волокна формируют нерв или нервный ствол, состоящий из большого числа нервных волокон, заключённых в общую соединительнотканную оболочку.

Нервные волокна, проводящие возбуждение от рецепторов в ЦНС называются афферентными, а волокна, проводящие возбуждение от ЦНС к исполнительным органам, называются эфферентными. Нервы состоят из афферентных и эфферентных волокон. Нервное волокно обладает следующими физиологическими свойствами: возбудимостью, проводимостью, лабильностью.

Закон двустороннего проведения возбуждения по нервному волокну. Возбуждение по нервному волокну распространяется в обе стороны от места его возникновения, т.е. центростремительно и центробежно.

Закон анатомической и физиологической целостности нервного волокна. Проведение возбуждения по нервному волокну возможно лишь в том случае, если сохранена его анатомическая и физиологическая целостность. Различные факторы, воздействующие на нервное волокно (наркотические вещества, охлаждение, перевязка и т.д.) приводят к нарушению физиологической целостности, т.е. к нарушению механизмов передачи возбуждения. Несмотря на сохранение его анатомической целостности, проведение возбуждения в таких условиях нарушается.

Закон изолированного проведения возбуждения по нервному волокну. В составе нерва возбуждение по нервному волокну распространяется изолированно, т.е. не переходя с одного волокна на другое. Изолированное проведение возбуждения обусловлено тем, что сопротивление жидкости, заполняющей межклеточные пространства, значительно ниже сопротивления мембраны нервных волокон. Поэтому основная часть тока, возникающего между возбуждённым и невозбуждённым участком нервного волокна, проходит по межклеточным щелям, не действуя на рядом расположенные нервные волокна.

Изолированное проведение возбуждения имеет важное значение. Нерв содержит большое количество нервных волокон (чувствительных, двигательных, вегетативных), которые иннервируют различные по структуру и функциям эффекторы (клетки, ткани, органы). Если бы возбуждение внутри нерва распространялось с одного нервного волокна на другое, то нормальное функционирование органов было бы невозможно.

Нервные волокна обладают лабильностью – способностью воспроизводить определённое количество циклов возбуждения в единицу времени в соответствии с ритмом действующих раздражителей. Мерой лабильности является максимальное количество циклов возбуждения, которое способно воспроизвести нервное волокно в единицу времени без трансформации ритма раздражения. Лабильность определяется длительностью пика потенциала действия, т.е. фазой абсолютной рефрактерности.

Н.Е. Введенский обнаружил, что если участок нерва подвергнуть воздействию повреждающего агента посредством, например, отравления или повреждения, то лабильность такого участка резко снижается. Восстановление исходного состояния нервного волокна после каждого потенциала действия в повреждённом участке происходит медленно. При действии на этот участок частых раздражителей он не в состоянии воспроизвести заданный ритм раздражения, и поэтому проведение импульсов блокируется. Такое состояние пониженной лабильности было названо парабиозом. В развитии состояния парабиоза можно отметить три, последовательно сменяющих друг друга, фазы: уравнительную, парадоксальную, тормозную.

В уравнительную фазу происходит уравнивание величины ответной реакции на частые и редкие раздражители. В парадоксальную фазу происходит дальнейшее снижение лабильности. При этом на редкие и частые раздражители ответная реакция возникает, но на частые раздражители она значительно меньше, т.к. частые раздражители ещё больше снижают лабильность, удлиняя фазу абсолютной рефрактерности. Следовательно, наблюдается парадокс – на редкие раздражители ответная реакция больше, чем на частые.

В тормозную фазу лабильность снижается до такой степени, что и редкие, и частые раздражители не вызывают ответной реакции.

Явление парабиоза лежит в основе медикаментозного локального обезболивания. Влияние анестезирующих веществ также связано с понижением лабильности и нарушением механизма проведения возбуждения по нервным волокнам.

Парабиоз – явление обратимое. После прекращения его действия нерв может выходить из состояния парабиоза через те же фазы, но в обратной последовательности.
9.4. Физиология мышц и синапсов
У человека различают три вида мышц:

1. поперечно-полосатые скелетные мышцы;

2. поперечно-паласатая сердечная мышца;

3. гладкие мышцы внутренних органов, кожи, сосудов.

Мышцы обладают физическими и физиологическими свойствами. Рассмотрим те свойства, которые характерны для скелетных мышц.

Физические свойства скелетных мышц.

1. Растяжимость – способность мышцы изменять свою длину под действием растягивающей её силы.

2. Эластичность – способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы. Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение её к первоначальным размерам является полным. Эти свойства очень важны для осуществления нормальных функций скелетных мышц.

3. Сила мышцы. Она определяется максимальным грузом, который мышца в состоянии поднять. Для сравнения силы различных мышц определяют их удельную силу – максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров её физиологического поперечного сечения.

4. Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъёма. Работа мышцы постепенно увеличивается с увеличением груза, но до определённого предела, после которого увеличение груза приводит к уменьшению работы, т.к. снижается высота подъёма груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок (закон средних нагрузок).

Физиологические свойства мышц.

1. возбудимость – способность приходить в состояние возбуждения при действии раздражителей.

2. проводимость – способность проводить возбуждение.

3. сократимость – способность мышцы изменять свою длину или напряжение в ответ на действие раздражителя.

4. лабильность – лабильность мышцы равна 200-300 Гц.

При непосредственном раздражении мышцы (прямое раздражение) или опосредовано через иннервирующий её двигательный нерв (непрямое раздражение) одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют 3 фазы:

1. латентный период – время от начала действия раздражителя до начала ответной реакции;

2. фаза сокращения (фаза укорочения);

3. фаза расслабления.

В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, следующих друг за другом с определёнными интервалами, на которую мышца отвечает длительным сокращением. Такое длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, получило название тетанического сокращения или тетануса. Различают 2 вида тетануса: зубчатый и гладкий (рис. 9.2).

Если каждый последующий импульс возбуждения поступает к мышце в тот период, когда она находится в фазе укорочения, то возникает гладкий тетанус, а если в фазу расслабления – зубчатый тетанус.



Рис. 9.2. Различные виды тетануса при повышении частоты раздражения

I – одиночные сокращения; II – зубчатый тетанус; IV – гладкий (сплошной) тетанус.


Амплитуда тетанического сокращения превышает амплитуду одиночного мышечного сокращения. Исходя из этого, Гельмгольц объяснил процесс тетанического сокращения простой суперпозицией, т.е. простой суммацией амплитуды одного мышечного сокращения с амплитудой другого. Но в дальнейшем было показано, что при тетанусе имеет место не простое сложение двух механических эффектов, т.к. это сумма может быть то большей, то меньшей. Н.Е.Введенский объяснил это явление с точки зрения состояния возбудимости мышцы, введя понятие об оптимуме и пессимуме частоты раздражения.

Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу повышенной возбудимости. Тетанус при этом будет максимальным по амплитуде – оптимальным.

Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости. Тетанус при этом будет минимальным по амплитуде – пессимальным.

Режимы мышечных сокращений. Различают изотонический, изометрический и смешанный режимы сокращения мышц.

При изотоническом сокращении мышцы происходит изменение её длины, а напряжение остаётся постоянным. Такое сокращение происходит в том случае, когда мышца не перемещает груз. В естественных условиях близкими к изотоническому типу сокращений являются сокращения мышц языка.

При изометрическом сокращении длина мышечных волокон остаётся постоянной, меняется напряжение мышцы. Такое сокращение мышцы можно получить при попытке поднять непосильный груз.

В целом организме сокращения мышц никогда не бывают чисто изотоническим или изометрическим, они всегда имеют смешанный характер, т.е. происходит изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим если преобладает напряжение мышцы, или ауксометрическим если преобладает укорочение.
Механизм мышечного сокращения. Мышцы состоят из мышечных волокон, которые состоят из множества тонких нитей – миофибрилл, расположенных продольно. Каждая миофибрилла состоит из протофибрилл – нитей сократительных белков актина и миозина. Перегородки, называемые 2-пластинами, разделяют миофибриллы и, следовательно, мышечное волокно на участки – саркомеры. В саркомере наблюдают правильно чередующиеся поперечные светлые и тёмные полосы. Это поперечная исчерченность миофибрилл обусловлена определённым расположением нитей актина и миозина

Гладкие мышцы. Они, формирующие мышечные слои стенок желудка, кишечника, мочеточников, бронхов, кровеносных сосудов и др. полых внутренних полых органов, построены из веретенообразных одноядерных мышечных клеток.

Особенностью гладких мышц является их способность осуществлять относительно медленные движения и длительные тонические сокращения. Медленные, имеющие ритмический характер, сокращения гладких мышц желудка, кишечника, мочеточника и др. органов обеспечивают перемещение содержимого этих органов. Длительные тонические сокращения гладких мышц особенно хорошо выражены в сфинктерах полых органов, которые препятствуют выходу содержимого этих органов.

Гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол, также находятся в состоянии постоянного тонического сокращения. Изменение тонуса мышц стенок артериальных сосудов влияет на величину их просвета и, следовательно, на уровень кровяного давления и кровоснабжения органов.

Важным свойством гладких мышц является их пластичность, т.е. способность сохранять приданную им при растяжении длину. Скелетная мышца в норме почти не обладает пластичностью. Эти различия хорошо наблюдать при медленном растяжении гладкой и скелетной мышцы. При удалении растягивающего груза скелетная мышца быстро укорачивается, а гладкая остаётся растянутой. Высокая пластичность гладких мышц имеет большое значение для нормального функционирования полых органов. Благодаря высокой пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии. Так, например, пластичность мышц мочевого пузыря по мере его наполнения предотвращает избыточное повышение давления внутри его.

Синапс – это специализированная структура, которая обеспечивает передачу возбуждение с одной возбудимой структуры на другую. Термин «синапс» означает «сведение», «соединение», «застёжка».

Классификация синапсов. Синапсы можно классифицировать по:

1. их местоположению и принадлежности соответствующим структурам:

-Периферические;

-Центральные;

2. знаку их действия – возбуждающие и тормозящие;

3. способу передачи сигналов – химические, электрические, смешанные;

4. медиатору, с помощью которого осуществляется передача

Строение синапса. Все синапсы имеют много общего, поэтому строение синапса и механизм передачи возбуждения в нём можно рассмотреть на примере нервно-мышечного синапса.

Синапс состоит из трёх основных элементов:

1. пресинаптической мембраны (в нервно-мышечном синапсе – это утолщённая концевая пластинка);

2. постсинаптической мембраны;

3. синаптической щели.
Механизм передачи возбуждения в химических возбуждающих синапсах. В синапсах с химической передачей возбуждение передаётся с помощью медиаторов (посредников). Т.о. медиаторы – это химические вещества, которые обеспечивают передачу возбуждения в синапсах.

Глава 10. Центральная нервная система
Нервная система играет важнейшую роль в регуляции функций организма. Она обеспечивает согласованную работу клеток, тканей, органов и их систем. При этом организм функционирует как единое целое.

Деятельность нервной системы лежит в основе чувств, обучения, памяти, речи и мышления – психический процессов, с помощью которых человек не только познает окружающую среду, но и может активно ее изменить.

Функцией нервной системы является управление деятельностью различных систем и аппаратов, составляющих целостный организм, координирование протекающих в нем процессов, установление взаимосвязей организма с внешней средой. Деятельность нервной системы – это ответная реакция организма на то, или иное раздражение (внешнее или внутренне воздействие), которая происходит при участие центральной нервной системы (ЦНС). Таким образом, нервная система обеспечивает взаимосвязь и единство организма в целом. Благодаря нервной системе осуществляется связь организма с внешней средой.
10.1. Строение нервной системы.
1   ...   4   5   6   7   8   9   10   11   12


написать администратору сайта