Главная страница
Навигация по странице:

  • 3.5. Техника поддержания давления закачкой воды 3.5.1. Водозаборы

  • 3.5.2. Насосные станции первого подъема

  • 3.5.3. Буферные емкости

  • 3.5.4.Станции второго подъема

  • 3.6. Оборудование кустовых насосных станций

  • Основные характеристики БКНС

  • 3.7. Технология и техника использования глубинных вод для ППД

  • Учебное пособие в нефтяной промышленности. Учебное пособие " скважинная добыча нефти и газа"


    Скачать 7.18 Mb.
    НазваниеУчебное пособие " скважинная добыча нефти и газа"
    АнкорУчебное пособие в нефтяной промышленности
    Дата23.01.2020
    Размер7.18 Mb.
    Формат файлаdoc
    Имя файлаUhebnoe posobie dobihi.doc
    ТипУчебное пособие
    #105556
    страница14 из 156
    1   ...   10   11   12   13   14   15   16   17   ...   156
    3.4. Водоснабжение систем ППД

    Основное назначение системы водоснабжения при поддержании пластового давления - добыть нужное количество воды, пригодной для закачки в пласт, распределить ее между нагнетательными скважинами и закачать в пласт. Конкретный выбор системы водоснабжения зависит от того, на какой стадии разработки находится данное месторождение.

    В настоящее время ППД стремятся осуществить с самого начала разработки месторождения. В этом случае необходимо большое количество (практически 100%) пресной воды, так как добывающие скважины на этой стадии практически дают безводную продукцию. В дальнейшем скважины все больше обводняются, появляется во все возрастающих количествах попутная вода, которая должна быть утилизирована. В связи с этим системы водоснабжения должны видоизменяться и приспосабливаться к конкретным условиям разработки месторождения. Проектируемая система водоснабжения должна предусматривать рост обводненности продукции скважин и необходимость утилизации всех так называемых промысловых сточных вод, включая ливневые, попутные, воды установок по подготовке нефти н др.

    Для соблюдения мер по охране природы и окружающей среды система водоснабжения в любом случае должна предусматривать 100%-ную утилизацию сточных вод и работу всей системы ППД по замкнутому технолотическому циклу.

    Это усложняет и несколько удорожает систему водоснабжения, так как возникает необходимость специальной подготовки сточных вод, очистки их от нефтепродуктов н взвеси, борьбы с возрастающей коррозией технологического оборудования и водоводов. Однако сточные воды, как правило, содержащие ПАВы, вводимые на установках по обезвоживанию и обессоливанию нефти, обладают улучшенными отмывающими и нефтевытесняющими способностями, что должно привести к увеличению нефтеотдачи пласта.

    Конкретный выбор системы водоснабжения зависит от источников воды для закачки в пласт, которыми могут быть:

    • открытые водоемы (рек, озер, морей);

    • грунтовые, к которым относятся подрусловые воды;

    • водоносные горизонты данного месторождения;

    • сточные воды, состоящие из смеси добытой вместе с нефтью пластовой воды,

    • воды отстойных резервуарных парков, установок по подготовке нефти, ливневые воды промысловых объектов. Сточные воды загрязнены нефтепродуктами и требуют специальной очистки.

    Используемая для ППД вода не должна вызывать образование нерастворимых соединений при контакте с пластовой водой, что может привести к закупорке пор, или, как говорят, должна обладать химической совместимостью с пластовой. Качество воды оценивают в первую очередь следующими параметрами: количеством механических примесей (КВЧ - количество взвешенных частиц), нефтепродуктов, железа и его соединений, дающих при окислении кислородом нерастворимые осадки, закупоривающие поры пласта, сероводорода (H2S), способствующего коррозии водоводов и оборудования, микроорганизмов, а также солевым составом воды и ее плотностью.

    Практика показала, что в большинстве случаев можно исключить специальную химическую подготовку воды и не предъявлять жесткие требования к КВЧ, а в ряде случаев в десятки раз увеличить допустимое КВЧ без заметного уменьшения поглотительной способности скважин. Например, для высокопроницаемых пластов Ромашкинского месторождения была доказана возможность нагнетания воды с содержанием до 30 мг/л нефти и до 40 - 50 мг/л твердых частиц размером 5 - 10 мкм.



    Рис. 3.4. Типовая схема водоснабжения системы ППД:

    1 - водозаборные устройства; 2 - станции I подъема; 3 - буферные емкости для грязной воды; 4 - станция водоподготовки; 5 - буферные емкости для чистой воды; 6 - насосная станция II подъема; 7 - кустовые насосные станции (КНС); 8 - нагнетательные скважины; 9 - разводящий водовод; 10 - водовод высокого давления (10 - 20 Мпа).
    Однако опыт показал, что нормирование качества воды для нагнетания в пласт нецелесообразно, так как пористость, проницаемость и трещиноватость пластов могут в широком диапазоне изменять требования к воде и к содержанию КВЧ в частности. Обычно при опытной закачке выявляются как пригодность имеющейся воды, так и возможная приемистость нагнетательных скважин и требуемое давление.

    Система водоснабжения состоит обычно из нескольких достаточно самостоятельных звеньев или элементов, к которым относятся водозаборные устройства, напорные станции первого подъема, станция водоподготовки (при необходимости), напорная станция второго подъема, нагнетающая очищенную воду в разводящий коллектор и напорные станции третьего подъема или так называемые кустовые насосные станции (КНС), закачивающие воду непосредственно в нагнетательные скважины.

    Между отдельными звеньями системы водоснабжения создаются промежуточные буферные емкости для запаса воды, обеспечивающие непрерывность работы системы при кратковременных изменениях пропускной способности отдельных элементов в результате остановок по технологическим причинам или при авариях: порывах водоводов, остановке скважин.

    Такая система водоснабжения - типичная для восточных районов европейской части России и некоторых других районов - показана на рис. 3.4. При использовании сточных вод необходимое количество пресных вод (или морских) сокращается. Это приводит к уменьшению мощности водозаборных сооружений, станции первого подъема, а также буферных емкостей перед станцией водоподготовки. Давление, развиваемое насосами (как правло, центробежными) станции первого подъема, обычно невелики и зависят в известной мере от рельефа местности, удаления станции водоподготовки и расхода жидкости. Как правило, оно не превышает 1,0 МПа. Давление развиваемое насосами станции второго подъема, обычно больше и обусловлено необходимостью создания подпора на приеме насосов высокого давления самых удаленных станций третьего подъема (КНС). Давление подпора иногда достигает 3,0 МПа.

    Разводящий водовод, питающий КНС, иногда выполняется в виде кольцевого водовода, замыкающего все КНС в единое кольцо, если они размещаются по периметру промысловой площади. Кольцевая схема обеспечивает непрерывность питания всех КНС при порыве водовода практически в любом месте.

    Совершенно новые технические решения системы водоснабжения были найдены для условий Западной Сибири, Тюменской области и некоторых других районов. Мощная и широко распространенная пластовая водонапорная система, залегающая на глубинах от 900 до 1100 м, в этих районах позволила решить проблему водоснабжения проще и экономически дешевле, использовать для ППД подземные воды мощных водонапорных комплексов апт-сеноманских и альб-сеноманских отложений. Дебиты водяных скважин, пробуренных на эти пласты, достигают 3000 - 4000 м3/сут при депрессиях, измеряемых несколькими метрами водяного столба. Сущность новых технических решений заключалась в устранении ряда промежуточных элементов типовой схемы, в совмещении нагнетательных скважин с водозаборными и создании КНС непосредственно в водозаборных скважинах. В принципе эти схемы не являются оригинальными, так как на ряде месторождений межпластовый переток воды из водоносных пластов, залегающих выше или ниже нефтеносного, был осуществлен как в условиях естественного, так и в условиях принудительного перетока. Однако масштабы применения этих схем и широкое использование новых технических средств для их осуществления на месторождениях Тюменской области являются исключительно большими. Необходимо отметить, что пластовые высоконапорные воды, как правило, достаточно чисты, не нуждаются в особой подготовке и могут непосредственно закачиваться в нагнетательные скважины по герметичным системам без контакта с воздухом.

    Это существенно упрощает водоснабжение по крайней мере на начальных этапах разработки, когда попутной воды нет пли ее очень мало. На последующих этапах разработки, когда возникает необходимость утилизации сточных вод, их подготовки и очистки от нефти и подавления коррозионной активности, система водоснабжения с использованием вод глубинных пластов будет осложнена новыми элементами и станет похожей на типовую схему.

    3.5. Техника поддержания давления закачкой воды

    3.5.1. Водозаборы

    Водозаборы открытых водоемов обычного типа, применяемые в коммунальном хозяйстве, - самые простые водозаборы. Существенный технологический недостаток открытых водозаборов, сооружаемых в реках, - это непостоянство качества воды. В паводковый и ливневые периоды вода сильно загрязняется илом и взвесью, что затрудняет ее подготовку. Очистные сооружения, рассчитываемые на установившийся режим работы, обычно не справляются с пиковой нагрузкой, .а это приводит к снижению производительности станции водоподготовки и качества воды.

    Всасывающая труба открытого водозабора оборудуется приемной сеткой для предупреждения попадания водорослей, щепы и других крупных предметов, выносится на некоторое расстояние от берега и устанавливается глубже, чем возможный минимальный уровень в реке (водоеме) для непрерывного отбора более чистой воды и защиты водозабора от ледохода при паводке. Размер всасывающих труб, высота всасывания и другие элементы конструкции рассчитываются обычными методами трубной гидравлики. Закрытый водозабор или так называемый подрусловый представляет собой одну или несколько групп мелких водозаборных скважин вблизи реки, пробуренных на подстилающие дно реки аллювиальные хорошо проницаемые породы и имеющие «глубины 10 - 50 м.

    Скважины закрепляются колонной с фильтром в нижней части. Из скважин вода откачивается либо специальными погружными центробежными насосами, либо (если динамический уровень достаточно высок) с помощью сифонных, т. е. вакуумных, устройств.

    Как показала практика, сифонный водозабор на 15 - 25 % дешевле механизированного и поэтому более предпочтителен.

    Подрусловый водозабор подает воду, прошедшую естественную фильтрацию в пласте, поэтому качество получаемой воды высокое и практически не зависит от паводков. Оголовок скважины обычно размещается в подземной бетонной шахте глубиной 2 - 4 м. Шахта на поверхности закрывается люком и имеет стремянку для доступа оператора к оборудованию устья скважины. Вдоль линии расположения водозаборных скважин в грунте укладывается приемный коллектор, к которому присоединяется каждая скважина через запорную задвижку низкого давления и обратный клапан.


    Рис. 3.5. Схема сифонного водозабора.

    1 - фильтр; 2 - колонна; 3 - водоподъемная труба; 4 - вакуум-котел; 5 - вакуумный насос;

    6 - вакуумметр; 7 - насос I подъема; 8 - резервуар для чистой воды; 9 - насосная станция.
    При сифонном водозаборе коллектор от группы скважин подсоединяется к вакуумным котлам, в которых создается вакуум до 0,08 МПа с помощью небольших специальных вакуумных насосов. Вода подрусловых скважин не содержит газа, поэтому вакуумные насосы требуются только для поддержания постоянного разрежения в коллекторе. Вакуумных котлов обычно два. Один - резервный. Котлы имеют большую высоту (около 7 м) и устанавливаются вместе с насосами станции первого подъема в бетонной шахте. В верхней части шахты размещаются электрические станции управления электродвигателями с необходимой местной и, если нужно, дистанционной автоматикой. В шахте обычно устанавливаются центробежные насосы 8НДВ с подачей Q = 540 м3/ч и напором H = 74 м с приводом от электродвигателя мощностью 180 кВт.

    Один из насосов - резервный для обеспечения непрерывности работы при ремонтах. Всасывающие линии центробежных насосов всегда находятся под заливом, так как уровень воды в котлах высокий. На выкидных линиях устанавливают задвижки, обратный клапан и расходомер. Обычно выкидных линий две. Это повышает надежность систем при возможных порывах и ремонтах. Часто все задвижки, клапаны, фланцевые соединения, расходомеры и другие устройства группируются и устанавливаются в отдельной небольшой шахте для предотвращения затопления основной шахты с электрооборудованием в случае неисправностей и порывов. В случае механизированного водозабора в скважины опускаются на глубину ниже динамического уровня специальные погружные артезианские центробежные электронасосы (тип АП - артезианский погружной) с подачей от 7 до 100 м3/ч, напором от 65 до 200 м и мощностью погружного электродвигателя от 2,5 до 150 кВт. Эти центробежные насосы имеют общий вал с погружным электродвигателем.

    Кроме того, применяются насосы АТН-10 или АТН-8 с числом ступеней от 14 до 26. Насосы АТН отличаются от насосов АП тем, что у них электродвигатель располагается над устьем скважины вертикально и соединяется валом с центробежным насосом, находящимся под динамическим уровнем. Вал проходит внутри труб, на которых спускается насос, и выводится из труб через сальник.

    Насосы АНТ-8 и АТН-10 развивают напор от 57 до 106 м, а их подача равна 30 - 90 м3/ч (720 - 2160 м3/сут). Мощность электродвигателей 10 - 20 кВт. При механизированном водозаборе напор, развиваемый погружными насосами, может быть достаточным для подачи воды в буферную емкость станции второго подъема или станции водоподготовки. В этом случае надобность в станции первого подъема отпадает.

    Водозаборные скважины, особенно с механизированным водоподъемом, требуют периодического обслуживания, ремонта, контроля за их работой и за положением динамического уровня. Фильтровая часть водозаборных скважин со временем заиливается, и для восстановления их дебита требуются периодические чистки и промывки. Эти работы, связанные с поднятием тяжестей, выполняются через горловину бетонной шахты со оголовка скважины с помощью простых треног и подъемных механизмов. Дебит скважины определяется с помощью шайбных измерителей расхода или по перепаду давления на коротком эталонном участке выкидной трубы. Динамический уровень достаточно просто и точно можно определить с помощью тонкой трубки, опускаемой под уровень жидкости. К верхнему концу трубки присоединяется водяной, ртутный или образцовый манометр низкого давления. Через тройник на трубке нагнетается воздух шинным насосом. Когда воздух начнет выходить из погруженного конца трубки, давление, показываемое манометром, стабилизируется и будет соответствовать глубине погружения трубки под динамический уровень воды в скважине,

    3.5.2. Насосные станции первого подъема

    При сифонных водозаборах насосы станции первого подъема (обычно три, из которых один резервный) устанавливаются в большой полуподземной шахте вместе с вакуумными котлами. При механизированном водоподъеме функции станции первого подъема выполняют насосы, установленные в каждой водозаборной скважине. В этом случае результирующий напор насосов, выкидные линии которых объединены общим коллектором, должен быть достаточным для подачи воды к буферным емкостям, к станции водоподготовки или к станции второго подъема. Если этого напора недостаточно, очевидно, потребуются дожимные насосы соответствующей производительности.

    3.5.3. Буферные емкости

    Они необходимы для обеспечения резерва воды обычно для шестичасовой непрерывной работы при прекращении подачи воды со станции первого подъема. Предполагается, что за 6 ч можно устранить причины (порыв водовода, прекращение подачи электроэнергии и др.) остановки подачи воды со стороны станции первого подъема.

    В северных и восточных районах получили широкое распространение подземные железобетонные резервуары, открывающиеся на поверхность земли только своими люками-лазами.

    Подземные резервуары предотвращают замерзание воды в зимний период, не требуют оборгева, не загромождают территорию и не коррелируют. В иных условиях (жаркий климат) временно могут применяться обычные стальные резервуары на поверхности земли. На заболоченных территориях заглубление в грунт невозможно, поэтому используются металлические буферные емкости, устанавливаемые на поверхности с подогревательными змеевиками в придонной части и внешней теплоизоляцией для обеспечения работы в зимний период.

    3.5.4.Станции второго подъема

    Насосные станции второго подъема осуществляют распределение воды по магистральным водоводам и снабжение ею непосредственно КНС. Располагаются они, как правило, в местах сосредоточения основных сооружений систем ППД (станции водоподготовки, ремонтные цехи и др.) и часто совмещаются с одной из КНС. На станциях второго подъема используют центробежные двух-, шестиступенчатые насосы с электроприводом. Число насосов, их подача и напор подбираются в соответствии с общими требованиями системы и гидравлическим расчетом. При этом предусматривается установка резервных насосов из расчета на два работающих один резервный, чтобы избежать в работе системы ППД остановок для замены изношенных насосов и для выполнения ремонтных работ. Такие остановки вредно отражаются на работе всей системы и, в частности, на поглотительной способности нагнетательных скважин.

    Современные станции второго подъема имеют блоки местной автоматики, которые обеспечивают работу станции на автоматическом режиме с самозапуском при подаче энергии после обесточивания фидеров, включением резервного насоса при наличии определенных аварийных признаков (перегрев подшипников, обмоток электродвигателя, прекращение подачи смазки, падение давления на приеме и пр.) у основных рабочих насосов и подачей различных сигналов на центральный диспетчерский пункт.

    Обычно станции второго подъема развивают такое давление, которое необходимо для преодоления гидравлических потерь до самых удаленных КНС с учетом разницы в гипсометрических отметках, путевого отбора воды на промежуточных КНС и обеспечения некоторого подпора (в некоторых случаях до 3 МПа) на приемах главных насосов КНС. Подпор на приемах насосов КНС позволяет на такую же величину увеличить давление на выкиде насосов, т. е. давление нагнетания, что в некоторых случаях существенно увеличивает поглотительную способность скважин.

    Каждая КНС обеспечивает водой ближайшие три - шесть нагнетательных скважин, которые группируются по давлению. Обслуживание одной КНС большего числа нагнетательных скважин нецелесообразно, так как это приводит к необходимости прокладки более длинных водоводов высокого давления к удаленным нагнетательным скважинам.

    Как правило, каждая нагнетательная скважина соединяется с КНС самостоятельным водоводом, так как в этом случае обеспечивается централизованный (в КНС) индивидуальный замер поглотительной способности каждой скважины, возможность группировки скважин по давлениям нагнетания и раздельного нагнетания, а также более независимая работа нагнетательных скважин и системы в целом в случаях порывов водоводов.

    Водоводы, идущие от КНС к нагнетательным скважинам, работают под очень высоким давлением, достигающим 25 МПа, изготавливаются из труб диаметром 89 или 102 мм и укладываются в траншеи на глубину ниже глубины промерзания. Расход жидкости замеряется централизованно на распределительной гребенке внутри КНС с помощью диафрагменных счетчиков высокого давления.

    Поскольку расход воды на каждую скважину и давление нагнетания достаточно стабильны, то отпадает необходимость в постоянном измерении этих величин. Поэтому регистрирующий прибор - расходомер может быть установлен один. Он поочередно может быть подключен к измерительной диафрагме (измеряется перепад давления при прохождении жидкости через диафрагму) во фланцевом соединении каждого водовода.

    3.6. Оборудование кустовых насосных станций

    Кустовые насосные станции оборудуются насосами различных типов: АЯП, 5МС7Х10; 6МС7Х10 и др. В последнее время разработаны центробежные насосы специально для поддержания пластового давления. Некоторые технические характеристики этих насосов приведены ниже:
    ЦНС-150 х 100, z = 8, Q == 150 м3/ч, P = 10,0 МПа

    ЦНС-150 х 125, z = 0, Тоже P =12,5 »

    ЦНС-150 х 150, z =12, » P = 15,0 »

    ЦНС-150 х 175, z =14, » P = 17,5 »

    ЦНС-150 х 200, z = 16, » P = 20,0 »

    Размеры насосов, м:

    длина . ....... ... ... ……… 2,5 - 3,3

    ширина .....................….. 1,5

    высота .....................…. 1,5

    Масса, т.......................... 4-5,5
    Номинальное давление Р этих насосов соответствует режиму наивысшего коэффициента полезного действия. Расчетный к. п. д. насосов - 0,7; частота вращения вала n = 3000 1/мин. Насосы допускают подпор 0,8 - 3 МПа и при некотором снижении подачи развивают повышенное давление (насос ЦНС-150 х 200 при Q = 100 м3/ч развивает давление до 25 МПа).

    Насосы изготавливаются в так называемом черном и нержавеющем (НЖ) исполнении (проточная часть выполнена из нержавеющей стали) для перекачки агрессивных сточных вод. Насосы НЖ примерно в 4 раза дороже насосов черного исполнения.

    Привод насосов - синхронный электродвигатель мощностью от 700 до 1500 кВт с массой до 6,5 т и напряжением электропитания 3 кВт (электродвигатели СТД). Насосы ЦНС имеют замкнутую циркуляционную систему смазки, приводимую в действие масляным насосом мощностью 3 кВт и поддерживающим давление в системе 0,28 МПа.

    В последнее время созданы так называемые блочные кустовые насосные станции - БКНС, изготавливающиеся индустриальным; способом и доставляющиеся на место установки в виде отдельных блоков, число которых определяется проектируемой производительностью. На месте установки они монтируются с помощью мощных автокранов. Основной блок представляет собой раму из таврового проката, на которой установлены насос, двигатель с масляной системой и другими элементами.

    Рама заделана в железобетонную плиту, служащую общей опорой. Сверху для укрытия оборудования от осадков предусмотрена металлическая кабина, состоящая из каркаса, на котором укрепляются панели с минераловатными матами для утепления (при необходимости). БКНС могут работать при температурах до - 55 °С (специально для условий Севера), причем обогрев осуществляется за счет теплоты, выделяемой электродвигателями. В кабинах также имеется вентиляционная система.

    Кроме основных блоков в состав БКНС входят вспомогательные блоки, в которых размещаются электрические распределительные устройства, распределительная гребенка напорного коллектора, низковольтное оборудование и блок для управления и автоматики. БКНС, созданные на базе насоса ЦНС-150Х150, рассчитаны на подачу 3600, 7200 и 10800 м3/сут. В соответствии с этим в состав БКНС входит один, два или три рабочих насоса ЦНС-150Х150 и, кроме того, в обязательном порядке один насос резервный (табл. 3.1).

    Таблица 3.1

    Основные характеристики БКНС

    Блок

    Шифр блока

    Масса с оборудова-нием, т

    Размеры, м

    Число блоков

    при числе насосов

    2

    3

    4

    Насосный крайний (резервный)

    НБ-1

    19

    9,8 х 3,1 х 3

    1

    1

    1

    Насосный средний (рабочий)

    НБ-2

    18

    9,8 х 3 х 3

    1

    2

    3

    Низковольтный

    А-1

    10

    9,8 х 3 х 3

    1

    1

    1

    Блок управления и автоматики

    А-2

    10

    9,8 х 3 х 3

    1

    1

    1

    Распределительная гребенка напорного коллектора

    БГ-1

    9,85

    6,2 х 3 х 3

    2

    2

    2

    Электрическое распределительное устройство

    РУ-6




    9 х 7,5 х 4,2

    1

    1

    1




    Схема унифицированного блока местной автоматики БМА-19
    БКНС не лишены известных недостатков. К их числу относится повышенная вибрация вследствие отсутствия фундамента, в результате которой может наблюдаться смещение блоков (сползание) на слабых грунтах. Кроме того, при ремонте насосов, их разборке и смене возникает необходимость снятия крышки кабины, а также использования для этих целей автокранов. Несмотря на эти недостатки, БКНС позволили сильно сократить сроки строительно-монтажных работ при сооружении системы ППД и осуществлять поддержание пластового давления на ранних стадиях разработки месторождения, не допуская существенного снижения пластового давления. Современные КНС и БКНС - высокоавтоматизированные объекты системы ППД. Они могут работать практически без обслуживающего персонала при периодической проверке функционирования отдельных элементов и узлов оборудования. Это достигается благодаря использованию местной автоматики, с помощью которой контролируют важнейшие узлы и элементы оборудования. Обычно такой контроль за работой КНС осуществляется с помощью унифицированного блока местной автоматики БМА-19.

    Как видно из схемы, при нарушении хотя бы одного из установленных параметров работы станции, например при падении давления в нагнетательной линии, нагреве статора или подшипника электродвигателя, возникает электрический сигнал, который дает команду в цепях управления на остановку соответствующего агрегата. При этом управление работой станции может быть как местное, так и дистанционное с центрального диспетчерского пункта.

    Кроме того, станция БМА-19 предусматривает возможность автоматического пуска резервного насоса при заданном снижении давления в нагнетательной гребенке. Выкидные линии автоматизированной КНС должны быть снабжены дистанционно управляемыми задвижками высокого давления с электроприводами, а также обратными клапанами.

    3.7. Технология и техника использования глубинных вод для ППД

    Использование вод глубинных водоносных пластов, залегающих выше или ниже нефтеносного пласта, для поддержания давления известно давно. Вначале такое использование сводилось к одновременному вскрытию водоносного и нефтеносного пластов одной скважиной. Если давление в водоносном пласте было больше, чем в нефтеносном пласте, происходил переток воды и вытеснение нефти в продуктивном горизонте.

    Воды глубинных пластов, как правило, очень чистые, без взвеси, с малым содержанием окислов железа, минерализованные, являются хорошим вытесняющим нефть агентом. На месторождениях с водоносными горизонтами, использование воды которых допустимо с точки зрения охраны природы и санитарно-гигиенических норм, эти горизонты могут быть идеальными источниками водоснабжения системы ППД.

    При использовании глубинных вод необходимо различать:

    1. Системы с естественным перетоком воды из водоносного пласта в нефтеносный под воздействием естественной репрессии приведенных давлений без применения механических средств для принудительной закачки (дожимных насосов).

    2. Системы с принудительным перетоком, в которых необходимая для закачки воды репрессия создается с помощью специальных погружных или поверхностных дожимных насосов.

    Обе системы в свою очередь могут подразделяться на системы с нижним перетоком, когда водоносный пласт залегает выше нефтеносного и системы с верхним перетоком, когда водоносный пласт залегает ниже нефтеносного.


    Рис. 3.6. Схема оборудования скважины при естественном внутренном перетоке:

    1 - нефтяной пласт; 2 - камера для установки дебитомера (расходомера);

    3 - разделительный пакер; 4 - водоносный пласт; 5 - перекрестная муфта.
    Кроме того, использование глубинных вод может быть осуществлено по схеме с внутрискважинным перетоком, при которой вода глубинного водоносного горизонта закачивается в нефтяной пласт без выхода ее на поверхность и по схеме внескважинным перетоком, при котором вода глубинного водоносного горизонта подается (естественно или принудительно) на поверхность, а затем закачивается в соседние нагнетательные скважины или в ту же водозаборную скважину по второму каналу (рис. 3.6). В последнем случае происходит совмещение функций водозаборной и нагнетательной скважин.

    При нижнем перетоке (рис. 3.6, а) вода поступает из нижнего водоносного пласта по НКТ, проходит камеру, где устанавливается расходомер, спускаемый на кабеле (при дистанционной регистрации) или на стальной проволоке (при местной регистрации) с поверхности в НКТ. Пройдя расходомер, вода через отверстия в НКТ поступает в нефтяной пласт.

    При верхнем перетоке (рис. 3.6,6) вода поступает из верхнего водоносного пласта, проходит по каналам перекрестной муфты и попадает в НКТ. Выше перекрестной муфты расположена камера для расходомера, спускаемого с поверхности. Через отверстия в НКТ над камерой вода попадает в кольцевое пространство и далее в хвостовую часть НКТ и в пласт.

    При естественном перетоке пакер, герметизирующий кольцевое пространство между НКТ и обсадной колонной, вообще говоря, необязателен, так как давление жидкости над пакером и под ним почти одинаковое. (Разница обусловлена только потерями давления на трение.) Однако для направления всего потока воды через расходомер кольцевое пространство должно быть герметизировано, поэтому установка пакера, хотя бы самого простого, не рассчитанного на значительный перепад давления, необходима.

    При принудительном перетоке установка пакера для герметизации кольцевого пространства обязательна не только для того, чтобы направить весь поток жидкости через расходомер, а главным образом для того, чтобы обеспечить перепад давления, создаваемый дожимным насосом для принудительного перетока. Поэтому пакер, на который будет действовать перепад давления, создаваемый дожимным насосом, должен надежно герметизировать кольцевое пространство между НКТ и обсадной колонной. Кроме того, для предупреждения смещения пакера по обсадной колонне под действием страгивающей силы, обусловленной разностью давлений н достигающей 150 кН (в зависимости от давления), пакер закрепляют на обсадной колонне устройством, называемым якорем.

    При приведенных схемах оборудования можно измерять, но нельзя регулировать расход жидкости, что бывает нужно для управления процессом ППД. Для регулировки расхода возможна установка глубинных штуцеров - диафрагм, заранее оттарированных на поверхности, или установка иных устройств, изменяющих местное гидравлическое сопротивление и спускаемых с помощью, например, канатной техники.

    Использование устройств для естественного перетока может оказаться эффективным для заводнення истощенных нефтяных пластов, в которых пластовое давление достаточно мало. В этих случаях разница приведенных давлений на отметке нефтяного пласта может быть большой и достаточной для поглощения нужных объемов воды. В неистощенных пластах, поскольку давления, как правило, равны гидростатическим, необходимой для поглощения естественной репрессии получить нельзя, поэтому возникает необходимость в принудительном перетоке.

    В практике ППД на нефтяных промыслах Башкирии, Куйбышевской области и других районов нашли применение (хотя и очень ограниченное) различные конструкции для принудительного перетока. Большинство из них основано на использовании погружных центробежных электронасосов, предназначенных для эксплуатации нефтяных скважин. В некоторых схемах для принудительного перетока используются штанговые насосы, а также появившиеся недавно центробежные электронасосы, спускаемые в скважину не на НКТ, а на кабеле-канате. Кабель-канат одновременно выполняет роль кабеля, подводящего электроэнергию к электродвигателю, и роль каната, на котором вся установка опускается в скважину и извлекается на поверхность. Насос, спускаемый на кабеле-канате, фиксируется в скважине на пакере, предварительно установленном на требуемой глубине с помощью НКТ, которые затем извлекаются. Подаваемая насосом жидкость движется по обсадной колонне и омывает кабель-канат. В настоящее время промышленностью уже освоены установки, спускаемые на кабеле-канате (табл. 3.2).

    Таблица 3.2
    1   ...   10   11   12   13   14   15   16   17   ...   156


    написать администратору сайта