Главная страница

Учебное пособие в нефтяной промышленности. Учебное пособие " скважинная добыча нефти и газа"


Скачать 7.18 Mb.
НазваниеУчебное пособие " скважинная добыча нефти и газа"
АнкорУчебное пособие в нефтяной промышленности
Дата23.01.2020
Размер7.18 Mb.
Формат файлаdoc
Имя файлаUhebnoe posobie dobihi.doc
ТипУчебное пособие
#105556
страница5 из 156
1   2   3   4   5   6   7   8   9   ...   156
2.2. Приток жидкости к скважине

Приток жидкости, газа, воды или их смесей к скважинам происходит в результате установления на забое скважин давления меньшего, чем в продуктивном пласте. Течение жидкости к скважинам исключительно сложно и не всегда поддается расчету. Лишь при геометрически правильном размещении скважин (линейные или кольцевые ряды скважин и правильные сетки), а также при ряде допущений (постоянство толщины, проницаемости и других параметров) удается аналитически рассчитать дебиты этих скважин при заданных давлениях на забоях или, наоборот, рассчитать давление при заданных дебитах. Однако вблизи каждой скважины в однородном пласте течение жидкости становится близким к радиальному. Это позволяет широко использовать для расчетов радиальную схему фильтрации.

Скорость фильтрации, согласно закону Дарси, записанному в дифференциальной форме, определяется следующим образом:

(2.4)

где k - проницаемость пласта; μ - динамическая вязкость; dp/dr - градиент давления вдоль радиуса (линии тока).

По всем линиям тока течение будет одинаковое. Другими словами, переменные, которыми являются скорость фильтрации и градиент давления, при изменении угловой координаты (в случае однородного пласта) останутся неизмененными, что позволяет оценить объемный расход жидкости q как произведение скорости фильтрации на площадь сечения пласта. В качестве площади может быть взята площадь сечения цилиндра 2πrh произвольного радиуса r, проведенного из центра скважины, где h - действительная толщина пласта, через который происходит фильтрация.

Тогда

. (2.5)

Обозначим

В общем случае предположим, что ε - гидропроводность - изменяется вдоль радиуса r, но так, что на одинаковых расстояниях от оси скважины вдоль любого радиуса величины ε одинаковые. Это случай так называемой кольцевой неоднородности.

Предположим, что ε задано в виде известной функции радиуса, т. е.

1   2   3   4   5   6   7   8   9   ...   156


написать администратору сайта