методичка по гидравлике. Учебное пособие для студентов направления 250400. 62 Технология лесозаготовительных и деревоперерабатывающих производств
Скачать 9.89 Mb.
|
S⎜⎛ Q ⎝ Ц Ц t⎟⎞ ⎠, (3.15) Ц – площадь сечения цилиндра, уменьшенная на площадь сечения штока; t – время полного хода поршня. Производительность насоса должна обеспечить необходимый расход для исполнительного силового агрегата и возместить потери (утечки) в зазорах гидроагрегатов. Поэтому при выборе насоса его расход QН предварительно принимается равным QН 1,05 1,1Q . (3.16) Полученные значения РН и QН корректируются по номинальному ряду давлений и расхода. КОНТРОЛЬНЫЕ ВОПРОСЫ К ГЛАВЕ 3
лесозаготовительных машинах?
чем заключается их принципиальное отличие?
Гидропривод может обеспечить надежное исполнение определенных заданных функций только при условии, если энергия потока жидкости, создаваемая насосом и передаваемая гидродвигателем, будет управляться. Для управления энергией потока жидкости, а следовательно, скоростью движения силового органа станка или машины; контроля за рабочими параметрами гидросистемы; поддержания этих параметров в заданных пределах при разных режимах работы гидропривода; обеспечения надежности и безопасности работы служит контрольно-регулирующая и направляющая аппаратура гидропривода. По принципу действия все устройства управления и контроля гидропривода делятся на два вида: устройства с геометрическими характеристиками, не зависимыми от параметров потока жидкости, и устройства, геометрические характеристики которых зависят от параметров потока. При этом под геометрическими характеристиками понимаются размеры рабочих окон, через которые проходит жидкость. В зависимости от степени открытия рабочего проходного сечения гидроаппаратура подразделяется на регулирующую и направляющую. Регулирующая гидроаппаратура изменяет давление, расход и направление потока рабочей жидкости за счет частичного открытия рабочего проходного сечения. Направляющая гидроаппаратура предназначена лишь для изменения направления потока рабочей жидкости за счет полного открытия или закрытия рабочего проходного сечения. К регулирующей гидроаппаратуре относят:
(делители, сумматоры потоков, обратные клапаны, гидрозамки и др.).
Регуляторами давления называются устройства, предназначенные для поддержания заданного давления рабочей жидкости в любой точке гидропривода. Регуляторы давления предохраняют гидропривод от перегрузок и могут быть использованы для разгрузки насоса в определенной части рабочего цикла. Для предохранения гидросистемы от перегрузок, а также от недопустимо высоких давлений жидкости служат предохранительные клапаны. Причиной повышения давления в гидроприводе может быть неисправность отдельного элемента гидропривода, засорение трубопровода, возросшее сопротивление на выходном звене, резкое увеличение сопротивления силового органа механизма или машины. В случае превышения давления клапан открывается для слива рабочей жидкости, а при восстановлении первоначального давления – закрывается. В качестве регуляторов давления используются напорные предохранительные и редукционные клапаны.
По конструкции предохранительные клапаны делятся на шариковые, конические и плунжерные (золотниковые). Предохранительные клапаны подразделяются на две группы: прямого действия и непрямого действия. В гидроклапанах прямого действия величина открытия рабочего проходного сечения изменяется в результате непосредственного воздействия потока рабочей жидкости на запорно-регулирующий элемент. В гидроклапанах непрямого действия поток сначала воздействует на вспомогательный запорно-регулирующий элемент, перемещение которого вызывает изменение положения основного запорно-регулирующего элемента этого клапана. На рисунке 4.1 представлены принципиальные схемы предохранительных клапанов прямого действия с шариковым, конусным, плунжерным и тарельчатым запорно-регулирующими элементами. Клапан состоит из запорно-регулирующего элемента 1 (шарика, конуса и т.д.), пружины 2, натяжение которой можно изменять регулировочным винтом 3. Отверстие 5 корпуса 4 соединяется с линией высокого давления, а отверстие 6 – со сливной линией. Часть корпуса, с которой запорно-регулирующий элемент клапана приходит в соприкосновение, называется седлом (посадочным местом). При установке клапана в гидросистему пружина 2 настраивается так, чтобы создаваемое ею давление было больше рабочего, тогда запорно- регулирующий элемент будет прижат к седлу, а линия слива будет отделена от линии высоко давления. При повышении давления в подводимом потоке сверх регламентированного запорно-регулирующий элемент клапана перемещается вверх, преодолевая усилие пружины, рабочее проходное сечение клапана открывается, и гидролиния высокого давления соединяется со сливной. Рисунок 4.1 – Принципиальные схемы напорных клапанов с запорно- регулирующими элементами: а – с шариковым; б – с конусным; в – с золотниковым; г – с тарельчатым; 1 – запорно-регулирующий элемент; 2 – пружина; 3 – регулировочный винт; 4 – корпус; 5 – напорное отверстие корпуса; 6 – сливное отверстие корпуса; 7 – камера демпфера; 8 – плунжер; 9 – калибровочное отверстие Вся рабочая жидкость идет через клапан на слив. Как только давление в напорной гидролинии упадет, клапан закроется, и если причина, вызвавшая повышение давления, не будет устранена, процесс повторится. В процессе работы клапана возникает вибрация запорно- регулирующего элемента, сопровождаемая ударами о седло и колебаниями давления в системе. Вибрация и удары могут служить причиной износа и потери герметичности клапанов. Для уменьшения силы удара и частоты колебаний клапана о седло применяют специальные гидравлические демпферы (рисунок 4.1 б, г). Устройство состоит из камеры 7, в которой перемещается плунжер 8. Камера заполнена жидкостью. С линией слива эта камера соединяется тонким калибровочным отверстием 9 диаметром 0,8 ÷ 1 мм. При открывании клапана плунжер вытесняет жидкость из камеры демпфера. Создаваемое при этом гидравлическое сопротивление, пропорциональное скорости движения плунжера, уменьшает частоту колебаний, силу удара запорно-регулирующего элемента и частично устраняет его вибрацию. Достоинство клапанов прямого действия – высокое быстродействие. Недостаток – увеличение размеров при повышении рабочего давления, а также нестабильность работы. При конструировании напорных клапанов их габарит и массу можно уменьшить, если применить клапаны непрямого действия (рисунок 4.2). Рисунок 4.2 – Схема предохранительного клапана непрямого действия: 1 – золотник; 2 – нерегулируемая пружина; 3 – запорно-регулирующий элемент; 4 – пружина; 5 – регулировочный винт; 6, 7, 8 – полости клапана; 9 – капиллярный канал; 10 – напорная гидролиния; 11 – сливная гидролиния; 12 – канал; 13 – кран Клапан состоит из основного запорно-регулирующего элемента – золотника 1 ступенчатой формы; нерегулируемой пружины 2 и вспомогательного запорно-регулирующего элемента 3 в виде шарикового клапана прямого действия. Усилие пружины 4 шарикового клапана регулируется винтом 5. Каналами в корпусе клапана полости 7 и 8 соединены с гидролинией 10 высокого давления. Полость 6 соединена с полостью 8 капиллярным каналом 9 в золотнике. Пружины шарикового клапана 3 настраивается на давление PК (на 10 ÷ 20% больше максимального рабочего в гидросистеме). Если при работе машины давление в гидросистеме PН < PК, шариковый клапан закрыт, в полостях 6, 7, 8 устанавливается одинаковое давление PН, золотник 1 под воздействием пружины 2 занимает крайнее нижнее положение, а гидролиния высокого давления 10 отделена от гидролинии слива 11 (положение клапана соответствует изображенному на рисунке 4.2). Изменение давления в гидросистеме вызывает изменение давления в полостях 6, 7, 8 клапана. В тот момент, когда давление PН превысит PК, шариковый клапан 3 откроется и через него жидкость в небольшом количестве начнет поступать на слив. В капиллярном канале золотника создается течение жидкости с потерей давления на преодоление гидравлических сопротивлений. Вследствие этого давление жидкости в полости 6 станет меньше давления в полостях 7 и 8. Под действием образовавшегося перепада давлений золотник 1 переместится вверх, сжимая пружину и соединяя линию 10 с линией 11. Рабочая жидкость будет поступать на слив, и перегрузки гидросистемы не произойдет. Однако как только линия высокого давления соединится со сливом, давление жидкости в гидросистеме уменьшится до PН < PК, шариковый клапан закроется и течение жидкости по капиллярному каналу прекратится. Давление в полостях 6, 7 и 8 выровняется, и под воздействием пружины 2 золотник возвратится в исходное положение, снова отделив линию высокого давления от слива. Если причина, вызвавшая повышение давления в гидросистеме, не будет устранена, процесс повторится и золотник в конечном итоге установится на определенной высоте, при которой давление в гидросистеме будет поддерживаться постоянным. Когда клапан находится в работе, золотник совершает колебательные движения. Уменьшению колебаний золотника способствует полость 7, оказывающая на него демпфирующее влияние. Для разгрузки системы или какого-либо ее участка клапаны непрямого действия могут управляться дистанционно. Для этого полость 6 посредством канала 12 и крана 13 необходимо соединить со сливом. В результате давление в полости 6 резко упадет, золотник 1 поднимется вверх, а линия высокого давления 10 соединится со сливом 11. По сравнению с клапанами прямого действия клапаны непрямого действия обладают рядом преимуществ:
В лесозаготовительной технике большое распространение получили предохранительные клапаны типа 510.32, 510.20. Технические характеристики предохранительных клапанов типа 510.32, 510.20 приведены в таблице 4.1. Таблица 4.1 – Технические характеристики предохранительных клапанов типа 510.32, 510.20
В настоящее время в промышленности широко используются напорные клапаны типа Г52. Клапаны работают на минеральном масле вязкостью 10 ÷ 60 мм2/с (10 ÷ 60 cCт) при температуре до 5000 С. Рекомендуется масло индустриальное 20 и 30 . Такие клапаны рассчитаны на давление от 5 до 20 МПа. Расход через клапан определяется его типоразмером и находится в пределах от 180 до 600 л/мин. В таблице 4.2 приведены технические характеристики предохранительных клапанов типа Г52-2 [15]. Таблица 4.2 – Технические характеристики предохранительных клапанов типа Г52-2
Технические характеристики некоторых предохранительных клапанов непрямого действия типа Г66, предназначенных для работы в гидросистемах стационарных и мобильных машин, приведены в таблице 4.3. Таблица 4.3 – Технические характеристики предохранительных клапанов типа Г66
Напорные клапаны могут быть использованы для обеспечения требуемой последовательности включения в работу гидродвигателей. Схема последовательного включения гидродвигателей приведена на рисунке 4.3. В фиксированном положении гидрораспределителя рабочая жидкость поступает одновременно в обе поршневые полости гидроцилиндра 1, однако первым в движение приходит поршень того гидроцилиндра, напорный клапан 2 у которого настроен на меньшее давление. После того как поршень этого гидроцилиндра завершит движение, давление в гидросистеме начнет повышаться - в результате в движение придет поршень второго гидроцилиндра, напорный клапан у которого настроен на большее давление. После переключения гидрораспределителя в движение придут оба поршня одновременно (при условии равенства сопротивления движению обоих гидроцилиндров). Рисунок 4.3 – Пример схемы включения напорных клапанов: 1 – гидроцилиндры; 2 – напорные клапаны
Редукционные клапаны предназначены для поддержания заданного более низкого давления рабочей жидкости в отводимом от клапана потоке (по сравнению с давлением подводимого потока). Редукционные клапаны обычно устанавливают в системах, где от одного насоса работают несколько потребителей с разными значениями рабочих давлений. Редукционный клапан (рисунок 4.4) состоит из запорно- регулирующего элемента 1, прижатого к седлу пружиной 2, сила натяжения которой регулируется винтом 3. Отверстие 4 корпуса соединяется с гидролинией высокого давления, а отверстие 5 – с гидролинией низкого давления. В исходном положении клапан прижат к седлу, а вход клапана отделен от выхода. При повышении давления P1 плунжер поднимается и гидролиния высокого давления соединяется с гидролинией низкого давления. Чем больше давление P1, тем больше открывается проходное сечение клапана и тем больше становится давление P2. Рисунок 4.4 – Схема редукционного клапана: 1 – запорно-регулирующий элемент; 2 – пружина; 3 – регулировочный винт; 4 – напорное отверстие; 5 – сливное отверстие На рисунке 4.5 приведена схема включения редукционного клапана. Рисунок 4.5 – Схема включения редукционного клапана: 1 – поворотный гидроцилиндр; 2 – гидроцилиндр; 3, 4 – дроссели; 5 – насос; 6 – предохранительный клапан; 7 – редукционный клапан; 8 – гидрораспределитель На схеме (рисунок 4.5) поворотным гидроцилиндром 1 осуществляется прижим бревна к подстопному месту при пилении, а гидроцилиндром 2 – опускание и подъем пилы. Скорость подъема и опускания пилы регулируется дросселями 3, 4. Гидросистема питается от одного насоса 5, который развивает постоянное давление PК, определяемое настройкой предохранительного клапана 6. Участок гидросистемы с поворотным гидроцилиндром работает на давлении P2 < PК. Для понижения давления в гидросистему включен редукционный клапан 7, настроенный на давление P2. При составлении гидросхемы и при монтаже гидроаппаратуры нужно помнить, что редукционный клапан пропускает рабочую жидкость только в одном направлении. Поэтому его устанавливают перед гидрораспределителем 8. В таблице 4.4 приведены технические характеристики распространенных редукционных клапанов непрямого действия типа Г57 [15]. Таблица 4.4 – Техническая характеристика редукционных клапанов типа Г57
В таблице 4.5 приведены технические характеристики редукционных клапанов типа КРМ-6/3. Таблица 4.5 – Техническая характеристика редукционных клапанов типа КРМ-6/3
Окончание таблицы 4.5
В таблице 4.6 приведены технические характеристики редукционных клапанов типа КР (С). Таблица 4.6 – Техническая характеристика редукционных клапанов типа КР (С)
|