Главная страница

Учебное пособие по ТЗИ. Учебное пособие для студентов специальностей Организация и технология защиты информации


Скачать 7.5 Mb.
НазваниеУчебное пособие для студентов специальностей Организация и технология защиты информации
АнкорУчебное пособие по ТЗИ.doc
Дата16.09.2017
Размер7.5 Mb.
Формат файлаdoc
Имя файлаУчебное пособие по ТЗИ.doc
ТипУчебное пособие
#8554
страница8 из 20
1   ...   4   5   6   7   8   9   10   11   ...   20


Средства телевизионного наблюдения. Средства телевизионного наблюдения используются для дистанционного наблюдения движущихся объектов. Это наиболее совершенный способ получения конфиденциальной информации. Применение специальных миниатюрных телекамер позволяет сделать это наблюдение абсолютно незаметным, информативным и безопасным. В общем случае схема комплекса средств телевизионного наблюдения может быть представлена в виде, приведенном на рис. 3.24.


Рис. 3.24. Комплекс средств телевизионного наблюдения
При телевизионном наблюдении изображение объективом проецируется на светочувствительный слой фотокатода вакуумной передающей трубки или мишени твердотельного преобразователя. Фотокатод содержит вещества, из атомов которого кванты световой энергии выбивают электроны, количество которых пропорционально энергии света (яркости элемента изображения). На фотокатоде образуется изображение Q(x,y,t) в виде электрических зарядов, эквивалентное оптическому B(x,y,t) изображению, где Q и В – значения соответственно величины зарядов и яркости в точках с координатами х, у в момент времени t. В вакуумных телевизионных передающих трубках производится считывание величины заряда с помощью электронного луча трубки, отклоняемого по горизонтали и вертикали магнитными полями. Эти поля создаются отклоняющими катушками, надеваемыми на горловину телевизионной трубки.

За время развития телевидения разработано много типов передающих телевизионных трубок, отличающихся чувствительностью фотокатода и разрешающей способностью. Появление достаточно простых ТВ-трубок типа «видикон» позволило создать компактные телекамеры. Миниатюрные видиконы с диаметром до 15 мм обеспечивают четкость 400–600 линий. На основе видикона разработаны различные варианты телевизионных передающих трубок: плюмбикон, кремникон, суперортикон, изокон и др., обеспечивающие качественное светоэлектрическое преобразование в широком диапазоне длин волн и освещенности.

В начале 70-х годов был открыт и реализован новый принцип построения безвакуумных, твердотельных преобразователей «свет – электрический сигнал», так называемых приборов с зарядовой связью (ПЗС). В основу таких приборов положены свойства структуры металл-окисел-полупроводник, называемой МОП-структурой (рис. 3.25).



Рис. 3.25. Структура металл-окисел-полупроводник
Фотокатод или мишень ПЗС представляет линейку или матрицу из ячеек с МОП-структурами, образованными горизонтальными и вертикальными токопроводящими прозрачными электродами. Размеры каждой ячейки соответствуют размерам элемента изображения. Разрешающая способность П3С определяется количеством ячеек, размещающихся в поле изображения.

Считывание зарядов, образующихся в каждой ячейке ПЗС под действием света точек изображения, производится путем последовательного перекачивания зарядов с ячейки на ячейку под действием управляющих сигналов, подаваемых на электроды. В результате этого на выходе ПЗС образуется последовательность электрических сигналов, амплитуда которых соответствует величине заряда на ячейках мишени ПЗС.

Электрический сигнал с выхода вакуумной передающей трубки или ПЗС усиливается и передается по кабелю или в виде радиосигналов к телевизионному приемнику. Последний выполняет обратные функции, преобразуя электрический сигнал в изображение, яркость каждого элемента которого эквивалентна амплитуде соответствующего сигнала. Формирование изображения производится на экране приемной масочной вакуумной трубки (кинескопа) или экране плоских панелей.

В вакуумной приемной телевизионной трубке (кинескопе) изображение создается на ее экране с люминофором электронным лучом, модулируемым электрическим сигналом изображения и отклоняемым по горизонтали (строке) и вертикали (по кадру) синхронно с траекторией отклонения луча передающей трубки или считывания с ПЗС. Синхронность обеспечивается путем передачи синхронизирующих сигналов в виде групп импульсов, моменты формирования которых соответствуют границам строк и кадров. Синхроимпульсы совместно с сигналом изображения образуют полный телевизионный сигнал. В приемнике из полного телевизионного сигнала выделяются синхроимпульсы, которые синхронизируют работу устройств кадровой и строчной развертки. Эти устройства формируют сигналы, при прохождении которых по катушкам отклонения, надетых на горловину кинескопа, создаются магнитные поля, отклоняющие электронный луч.

Но вакуумные приемные телевизионные трубки громоздкие, тяжелые, хрупкие, нуждаются в высоковольтном (20–25 кВ) источнике постоянного тока, устройства развертки потребляют достаточно большую мощность, создаваемые трубкой поля не безвредны для человека. Поэтому в настоящее время широкое применение нашли газоразрядные и жидкокристаллические панели.

Газоразрядную панель образуют два плоскопараллельных стекла, между которыми размещены миниатюрные газоразрядные элементы. В инертном газе газоразрядного элемента под действием управляющих сигналов, формируемых микропроцессором устройства синхронизации и подаваемых на прозрачные электроды одного или обоих стекол, возникает разряд с ультрафиолетовым излучением. Это излучение вызывает свечение нанесенного на переднее или заднее стекло люминофора одного цвета черно-белой панели или люминофоров красного, зеленного и синего цветов цветной панели.

Основой жидкокристаллической панели служат также две плоскопараллельные стеклянные пластины. На одну из них нанесены прозрачные горизонтальные и вертикальные токопроводящие электроды. В местах их пересечения укреплены пленочные транзисторы, два вывода которых соединены электродами на стекле, а третий образует обкладку конденсатора. Вторую пластину конденсатора представляет прозрачный металлизированный слой на второй стеклянной пластине, расположенной параллельно первой на расстоянии, измеряемой микронами. Между пластинами помещено органическое вещество (жидкий кристалл), поворачивающее под действием электрического поля плоскость поляризации проходящего через него света. С двух сторон панели укреплены поляроидные пленки, плоскости поляризации которых повернуты на 90° относительно друг друга.

Растр телевизионного изображения формируется сигналами, генерируемыми устройством синхронизации и подаваемыми на электроды стеклянных пластин. При подаче на эти электроды напряжения в точке их пересечен конденсатор заряжается и возникает электрическое поле между соответствующими обкладками конденсатора. В зависимости от величины напряжения изменяется угол поляризации жидкого кристалла между обкладками конденсатора. При отсутствии напряжения и, соответственно, электрического поля жидкий кристалл поворачивает угол поляризации света от лампы подсветки на 90°, в результате чего свет свободно проходит через поляроидные пленки. В зависимости от напряжения на обкладках конденсатора угол поляризации может изменяться от 90° до 0°, а прозрачность ячейки панели – от максимальной до непропускания света. Панель цветного телевизора содержит красный, зеленый и синий светофильтры, образующие триаду элемента разложения изображения.

Основными характеристиками телевизионных средств наблюдения являются чувствительность передающих трубок (ПЗС) и разрешающая способность. Чувствительность определяется чувствительностью материала фотокатода (мишени), а разрешение – количеством строк разложения изображения. Современные передающие телевизионные трубки имеют чувствительность, обеспечивающую телевизионное наблюдение объектов при их освещенности порядка 0,01 лк.

Разрешающая способность современных телевизионных средств наблюдения определяется количеством телевизионных линий, формирующих изображение, и составляет 350–650 линий. Чем выше разрешение, тем меньше длительность сигнала элемента изображения и тем шире спектр телевизионного сигнала. Ширина спектра телевизионного видеосигнала, передаваемого с частотой кадра 25 Гц и разрешением в 625 строк, составляет 6.5 МГц, телевизионного радиосигнала – 8 МГц.

С целью обеспечения скрытого наблюдения средства наблюдения камуфлируются под бытовые приборы и личные вещи. Видеопередатчики работают в диапазоне частот от 60 МГц до 2.3 ГГц. Их мощность составляет от 40 мВт до 50 Вт, при этом обеспечивают дальность передачи от нескольких метров до 20 км. Например, дальность передачи миниатюрного передатчика РК 5115 при мощности 1.5 Вт на частоте 236 МГц составляет 400 м. Для увеличения дальности передачи используются специальные ретрансляторы [6].

Для приема телевизионных радиосигналов используются как телевизионные приемники широкого применения, так и специальные. Например, видеоприемник РК 625 предназначен для приема сигналов в диапазоне от 60 МГц до 1.2 ГГц, а видеоприемник RX 100 – в диапазоне 1.2 – 2.3 ГГц. Видеоприемники имеют встроенные микропроцессоры, автоматизирующие операции по поиску и приему сигналов. Например, видеоприемник РК 6625 имеет 100 программируемых каналов памяти, 24-часовой таймер и автоматический режим поиска видеосигналов [10].

Для телевизионного наблюдения в ИК-диапазоне применяют телевизионные камеры с ПЗС, чувствительными к ИК-лучам. Для наблюдения в оптическом диапазоне применяют также лазеры, лучи которых в видимом или ИК-диапазонах подсвечивают объекты в условиях низкой естественной освещенности. Для этой цели луч лазера с помощью качающихся зеркал сканирует пространство с наблюдаемыми объектами, а отраженные от них сигналы принимаются фотоприемником так же, как при естественном освещении.

Для примера на рис. 3.26 приведена фотография видеокамеры ВК 520 [9], используемой в составе средств телевизионного наблюдения.



Рис. 3.26. Видеокамера ВК 520
С помощью этой сетевой видеокамеры можно контролировать видеопространство дома, коттеджа, офиса из любой точки мира. Возможность просмотра и управления через интернет. Вы можете дистанционно (удаленно) просматривать свой дом, офис, склад и так далее. Вы можете находиться в любой точке мира, Вам достаточно всего лишь выйти в интернет и набрать адрес вашей камеры. Так же через интернет Вы можете изменять настройки и управлять сетевой камерой. Инфракрасная подсветка - в темное время суток и при плохой освещенности работает ИК подсветка. Дальность съемки с ИК подсветкой до 5 метров. Возможность поворота Вы можете дистанционно поворачивать камеру. Поворот камеры осуществляется на 270 градусов по горизонтали и 120 градусов по вертикали, что в отличие от статично установленных камер позволяет значительно увеличить контролируемое пространство. Используя карту SD 2.0 ГБ можно производить резервную запись, SD карта устанавливается непосредственно в камеру. В камере присутствует детектор движения, а так же установка зоны срабатывания, выбор чувствительности. Подключить камеру к Интернету возможно через беспроводную сеть WI-FI. Вы можете устанавливать камеру в любой точке вашей квартиры или офиса, и при этом Вам не придется тянуть кучу проводов для подключения ее к Интернету – все по радиоканалу! Дальность передачи до 100 метров. Габаритные размеры камеры 104125106 мм. Разрешение приемника – 480234 точки. Частота передачи 2.400 – 2.483 ГГц.

Другим примером миниатюрной видеокамеры является видеокамера «ЛЮКС» [9], приведенная на рис. 3.27 вместе с приемным устройством.



Рис. 3.27. Видеокамера «ЛЮКС»
Видеокамера может быть установлена в любом удобном месте, подключается к батарейке типа "Крона". Приемное устройство может находиться на расстоянии до 100 м. Передача цветного изображения и звука происходит по радиоканалу на частоте 2,4 МГц. Приемное устройство через кабель USB подключается к ноутбуку, компьютеру и так далее. На экране отображается картинка в режиме реального времени в цвете и со звуком. Очень легкое управление. Для подключения устройства в комплекте есть диск, который устанавливается в течение 10 минут. Компьютеризированная система наблюдения позволяет выводить и записывать видео сигналы на компьютер или ноутбук через порт USB. Система использует технологию сжатия MPEG для записи движущихся объектов. Коэффициент сжатия достигает 300:1, что позволяет экономить дисковое пространство, подобно другим системам наблюдения. Размер записываемой картинки 720576. Размеры видеокамеры: 282422 мм, цена 8500 рублей.

Технические характеристики некоторых видеокамер, используемых для скрытой съемки, приведены в таблице 3.1 [11].
Таблица 3.1

Фото
































Модель




Микро видео камера ZT-802A




Мини видео камера M-208C




Камера ночного видения ST-812




USB микро видео камера




USB мини видео камера







Размер камеры, мм




25 X 20 X 21




33 x 36 x 25




54 x 43 x 43




28х24х22




 36х25х28







Вес, гр




40




50




212




45




55







Дальность передачи, м  (по прямой) *




до 100




до 100




до 100




до 100




до 100







Разрешение, ТВ линий




380




380




380




380




380







Возможность подключения усилителя




да (до 1,5 км)




да (до 1,5 км)




да (до 1,5 км)




нет




нет







Диаметр объектива, мм




2




8




8




2,3




8







Частота передачи, mhz




900 - 1200




900 - 1200




900 - 1200




Частотный диап. 2.4002.483 МГц: канал 1=2.414 МГц, канал 2=2.432 МГц, канал 3=2.450 МГц, канал 4=2.468 МГц







Работа от «Кроны» камеры, ч




5-7




5-7




нет




5-7




5-7







Мощность, мвт




200




200




200




200




200







Угол обзора, град




52




52




52




52




52







Минимальная освещенность, Lux




1,5-2 (лампочка 100-150 ватт)




1 (лампочка 60 ватт)




0 (полная темнота)




1,5-2  (лампочка 100-150 ватт)




1 (лампочка 60 ватт)







Ручная настройка резкости




да




да




нет




да




да







Подключение к:




 телевизору, видеомагнитофону, компьютеру , ноутбуку  и т.д.




Передача звука




да




да




да




да




да







Дальность съемки, м*****




150-200




150-200




150-200




150-200




150-200







Температурный режим




0…+40




0…+40




-10…+50




+10…+40




+10…+40








На рис. 3.28 приведена фотография системы передачи видеоинформации TeleObserver 2110В [12].



Рис. 3.28. Система передачи видеоинформации TeleObserver 2110В
TeleObserver 2110В это малогабаритная и компактная система передачи видеоинформации. Передовые методы сжатия обеспечивают передачу видеосигнала по каналам сотовой связи стандарта GSM. Использование данной системы позволяет передавать видео информацию в реальном времени из любого удаленного пункта на стационарный или мобильный контрольный пункт. Присмотреть за Вашей собственностью, наблюдать трудно доступные участки местности, или даже управлять повседневной работой: лучшим помощником в решении этих задач станет система "TeleObserver".

Система "TeleObserver 2110В" предназначена для мобильного и стационарного использования. На контролируемом объекте к базовому устройству может быть подключено до 4 камер. Программное обеспечение сжатия, соответствующее стандарту H.263, позволяет передавать до 3 кадров в секунду (GSM), или до 15 кадров в секунду (ISDN). Для обеспечения приема требуются персональный компьютер и GSM-модем. Программное обеспечение, входящее в комплект поставки, обеспечивает наблюдение в псевдореальном времени. Система управляет на расстоянии 4-мя камерами, яркостью, контрастностью, поворотными устройствами и zoom. В комплект поставки "TeleObserver 2100" входит интегрированное программное обеспечение видео плеера. Видео последовательности архивируются для анализа в автономном режиме. В результате высокой степени сжатия 24 часа видеозаписи занимают лишь около 120 Мб. Помимо обычных функций воспроизведения программное обеспечение включает в себя интегрированную функцию движения для просмотра наиболее значимых фрагментов всей видео последовательности.

Для устранения возможности несанкционированного приема передаваемой по каналам связи видеоинформации, используются системы маскирования видеоизображения. На рис. 3.29 приведена фотография комплекса маскирования видеоизображения «VideoLock» [12].






Кодер

Декодер

Рис. 3.29. Комплекс маскирования видеоизображения «VideoLock»
Особенности комплекса:

  • новейшие цифровые технологии для передачи видеоизображения по проводным и радио каналам;

  • простота использования;

  • метод маскировки: переворот и разрезание видеострок;

  • помехи, возникающие при передаче видеоизображения по радиоканалу, не оказывают влияния на качество восстановленного изображения;

  • изделия выполнены в виде модулей и предназначены для дальнейшей установки в приборы и оборудование;

  • совместим с любым CCTV оборудованием;

  • наличие уникального цифрового ключа (индивидуального или группового);

  • низкое напряжение питания и малая потребляемая мощность;

  • малые габариты (61416 мм) и низкая цена.

На рис. 3.30 показана схема включения комплекса в состав системы видеонаблюдения.



Рис. 3.30. Схема включения комплекса в состав системы видеонаблюдения
На рис. 3.31 показан кадр маскированного изображения, просматриваемый без использования и с использованием декодера.






Маскированное изображение

Демаскированное изображение

Рис. 3.31. Кадр маскированного изображения, просматриваемый без использования и с использованием декодера
В общем случае структурно удаленное видеонаблюдение можно изобразить так, как показано на рис. 3.32, которое позволяет осуществлять дистанционный мониторинг, управление и конфигурирование системы видеонаблюдения.



Рис. 3.32. Дистанционный мониторинг, управление и конфигурирование системы видеонаблюдения
3.3. Методы и средства противодействия наблюдению
При защите информации от наблюдения в оптическом диапазоне необходимо учитывать факторы, влияющие на вероятность обнаружения объектов наблюдения и ухудшающие точность измерения видовых демаскирующих признаков. Эффективность поиска объектов наблюдения зависит от следующих факторов:

  • Яркости объекта

  • Контрастности объекта

  • Угловых размеров объекта

  • Угловых размеров поля обзора

  • Времени наблюдения объекта

  • Скорости движения объекта

Для выявления объекта необходимо чтобы его яркость превышала мощность помех. Современные приемники имеют чувствительность, соответствующую энергии нескольких фотонов.

Уровень контрастности, при котором объект сливается с фоном и становится плохо различимым, составляет 0,08…0,1.

Увеличение угловых размеров объекта в 2 раза сокращает время, необходимое для его обнаружения, в 8 раз. Вспомним, что порог угловых размеров, которые глаз различает как две раздельные точки на объекте наблюдения, составляют днем – 0.5…1 угловых минут, ночью–30 угловых минут. Эти параметры можно считать предельными для распознавания объектов.

Двукратное увеличение поля обзора повышает время поиска объекта в 4 раза.

Чем меньше угловой размер объекта, тем больше влияние скорости на время и вероятность обнаружения объекта. Объекты, движущиеся с малой скоростью, обнаруживаются легче, чем неподвижные, а движущиеся с большой скоростью – труднее из-за ухудшения видимого контраста.

Исходя из вышесказанного методы противодействия наблюдению в оптическом диапазоне можно разделить на следующие:

  • Пространственное скрытие – размещение объектов в скрытых от наблюдения местах;

  • Временное скрытие – скрытие признаков объекта во время работы средств добывания информации. Например, во время пролета КА прекращаются испытания, в ходе которых проявляются видовые демаскирующие признаки;

  • Структурное скрытие – маскировка, то есть использование маскирующих свойств местности, маскировочная обработка местности, использование искусственных масок, нанесение воздушных пен;

  • Энергетическое скрытие – уменьшение яркости и освещенности объекта, уменьшение прозрачности среды (аэрозоли, маски), засветка (создание световой помехи приводящей к уменьшению контрастности объекта), ослепление (использование прожекторов в Берлине 1945 г.).

Основными средствами скрытия объектов наблюдения в оптическом диапазоне являются краски, различные маски и экраны. При выборе красок для маскировочного окрашивания кроме цвета важно учитывать характер изменения коэффициента отражения от длины волны. Чем меньше отличаются коэффициенты отражения краски в видимом и инфракрасном диапазонах волн, тем лучше ее маскирующая способность.

Искусственные оптические маскировочные маски в зависимости от ее формы и способа расположения возле объекта делятся на следующие типы:

  • маски-навесы;

  • вертикальные маски;

  • маски перекрытия;

  • наклонные маски;

  • радиопрозрачные маски.

Маски-навесы предназначены для скрытия объектов, расположенных на открытых сверху площадках и защищают их от наблюдения с помощью средств, размещаемых на верхних этажах высотных зданий, возвышенностях и горах, на самолетах и косми­ческих аппаратах.

Вертикальные маски защищают объекты от наблюдения с земли. Маски перекрытия состоят из каркаса и маскировочного покрытия, которые полностью закрывают объект. Они применяются, прежде всего, для защиты объектов, перевозимых на открытых платформах.

Наклонные маски используются в основном для скрытия теней объемных объектов, по длине которых с учетом положения солнца определяют высоту объектов при наблюдении сверху (с самолетов и космических аппаратов).

Радиопрозрачные маски выполняются из радиопрозрачных материалов (стеклопластика, пенопласта и др.), обычно в форме шара, для скрытия демаскирующих признаков и физической защиты антенн.

Искусственные оптические маски изготовляются из подручных материалов (хвороста, камыша, тростника, кустарника) или из табельных средств и материалов (маскировочной сети, устойчивой к воздействию факторов погоды, армированной маскировочной бумаги, сетчатой ткани, полихлорвиниловой пленки и др.), а также в виде различных сборных возимых маскировочных комплектов.

Для маскировки военной техники в оптическом диапазоне используются различные типы табельных маскировочных комплектов (МКТ): МКТ-Л – для маскировки на растительном фоне или обнаженном грунте, МКТ-С – для снежных фонов, МКТ-П – для горно-пустынной местности, МКТ-Т– для маскировки танков и др. Комплект представляет собой металлический разборный каркас, на который натягивается окрашенная в различные цвета специальная сплошная или сетчатая ткань с двусторонней окраской для разных фонов. Маскировочное покрытие одного комплекта имеет максимальный размер 12×18 м (из расчета создания маски для танка) и состоит из 12 фрагментов размером 3×6 м каждый. Фрагменты соединяются между собой сшивными шнурами, которые позволяют оперативно собирать покрытия различной кон­фигурации и размера, в том числе плоские, выпуклые, вертикаль­ные, наклонные, маски-макеты, маски-навесы. С помощью запасных сшивных шнуров, входящих в маскировочный комплект, мож­но объединять покрытия несколько комплектов для укрытия крупных объектов.

Искусственные оптические маски могут применяться многократно, не оказывают вредное воздействие на природу, совмести­мы с другими способами защиты.

Светонепроницаемые одно- и многоцветные воздушные пены, быстро наносимые с помощью генераторов пены на объекты, обеспечивают их эффективную маскировку в широком диапазоне длин волн в течение до нескольких часов.

Маски, которые создают у наблюдателя представление о другом объекте (объекте прикрытия), называются деформирующими. Например, при перевозке орудий на железнодорожных платформах их скрывают под брезентом, которым накрывают деревянный прямоугольный каркас. Наблюдатель по факту присутствия часовых на платформе сделает вывод о перевозке военной техники, но определить вид перевозимой техники не сможет. Во время битвы за Москву с помощью деформирующих масок и имитационного окрашивания для дезинформирования немецких летчиков мавзолей Ленина имел сверху вид двухэтажного особняка, а кремлевские башни были похожи на водонапорные башни и высотные здания.

Для дезинформирующего скрытия применяются кроме деформирующих масок ложные сооружения и конструкции, создающие признаки ложного объекта (объекта прикрытия). Ложные сооружения могут быть плоскими и объемными, функциональными и нефункциональными. Они относятся к наиболее дорогим средствам защиты информации, особенно объемные и функциональные, так как должны воспроизводить полный набор демаскирующих признаков объекта прикрытия в динамике в течение всего периода защиты. Если, например, имитируется объект, на котором работают люди, то они должны убедительно изображать соответствующую деятельность, а не устраивать непрерывные перекуры или греться на солнышке.

Энергетическое скрытие демаскирующих признаков объектов достигается путем уменьшения яркости объекта и фона ниже чувствительности глаза или технического фотоприемника, а также их ослепления. Наиболее естественным способом энергетического скрытия является проведение мероприятий, требующих защиты информации о них, ночью. Яркость объектов, имеющих искусственные источники света, снижается путем их выключения или экранирования светонепроницаемыми шторами и экранами.

Для экранирования объектов наблюдения в помещении применяются шторы, занавески, жалюзи, тонированные стекла и пленки. Эффективные экраны создают жалюзи. По виду материалов жалюзи делятся на тканевые, пластиковые, деревянные и металлические. Лучшие эксплуатационные свойства имеют деревянные и металлические жалюзи. По расположению ламелей жалюзи бывают вертикальные, горизонтальные и рулонные.

Энергетическое скрытие объектов, наблюдаемых в отраженном свете, обеспечивают рассмотренные искусственные маски, а также естественные и искусственные аэрозоли в среде распространения.

Аэрозоли – вещества в виде дисперсии твердых частиц и капель жидкости, находящихся во взвешенном состоянии в воздухе. К аэрозолям относятся обычно дымы, туманы, пыль, смог.

Естественные аэрозоли образуются обычно пылью и частицами воды. В зависимости от размеров частиц воды метеорологическая дальность изменяется от десятков метров (при очень сильном тумане, дожде и снеге) до 10-20 км (при дымке). Хорошая видимость обеспечивается при дальности 20-50 км, а исключительно хорошая – более 50 км.

Наиболее распространенной разновидностью аэрозольного состояния атмосферы является дымка. Дымка возникает при слипании мелкодисперсных частиц воздуха друг с другом и взаимодействии их с атмосферной влагой. В условиях повышенной влажности воздуха в результате взаимодействия паров воды с частицами растворимых в ней солей образуется туманная дымка, при которой метеорологическая дальность составляет 1-10 км.

Влияние аэрозольных образований в общем случае проявляется как в рассеянии, так и поглощении света частицами аэрозоля. Коэффициент ослабления (поглощения) в видимой области спектра изменяется в 1,5-2 раза. С увеличением длины волны потери ослабевают. Потери энергии волны при λ = 0,55 мкм приблизительно в 10 раз больше потерь для λ= 1,06 мкм. Аэрозольное рассеяние света зависит от коэффициентов его ослабления отдельными частицами, их концентрации и размеров. Оно определяет прозрачность и метеорологическую дальность видимости.

Использование естественных аэрозолей в качестве средств защиты от наблюдения затруднено из-за случайного характера их проявлений в виде образований, приводящих к малой метеорологической дальности. Тем не менее, естественные аэрозоли в виде облаков создают серьезные проблемы для разведки при наблюдении наземных и надводных объектов с помощью средств космической разведки. Учитывая, что траектории движения космического аппарата (КА) и облаков независимые, вероятность выполнения временного условия разведывательного контакта (совпадения моментов пролета спутника над интересующим разведку объектом и отсутствием облачности) равна произведению вероятностей каждого из этих событий. Следовательно, для обнаружения и распознавания объекта даже при отсутствии мер защиты информации о нем потребуются многократные пролеты над ним разведывательных КА.

С помощью дымовых шашек, специальных боеприпасов (снарядов, бомб), аэрозольных генераторов и дымовых машин создаются дымовые завесы (облака) из искусственных аэрозолей, обеспечивающих (при учете направления и силы ветра) эффективное, но кратковременное скрытие. Время и площадь скрытия зависят от многих факторов, в том числе от объема облака дыма, направления и скорости ветра, и колеблется от минут до 1…2 часов. Наиболее эффективные завесы образуются при скорости ветра 3…5 м/с.

В качестве химических веществ для образования дыма применяются эпоксидные, фенольные, полиэтиленовые, силикатные, уретановые смолы и другие высокомолекулярные соединения. Дымы из таких веществ получаются разделением частиц вещества в потоке горячих газов и другими способами. В зависимости от состава компонентов частицы, образующие аэрозольное облако, могут иметь диаметр от 1 до 100 мкм. Для образования аэрозольного облака, обеспечивающего, например, ослабление излучений в ИК-диапазоне примерно в 80 раз, на площади 600 м2 потребуется распылить около 400 г дымообразующего вещества [13].

Кроме того, на яркость объекта с собственными источниками тепла, и, следовательно, на его контраст с фоном в ИК-диапазоне влияет температура поверхности объекта. Для защиты объектов от наблюдения в инфракрасном диапазоне применяются различные теплоизолирующие экраны, в том числе подручные материалы с плохой теплопроводностью: листья деревьев и кустарников, сено, брезент и др. Хорошими теплоизолирующими свойствами обладают воздушные пены.

Так как скрытое наблюдение проводится, как правило, с помощью оптических приборов, то для противодействия наблюдению применяются активные средства обнаружения оптики. Такие средства представляют собой приборы ночного видения с лазерной подсветкой. Средство содержит лазерный излучатель в инфракрасном диапазоне длин волн, лучи которого сканируют наблюдаемое пространство. Отраженный от поверхности линзы объектива луч лазера обозначает место нахождения оптического прибора точкой повышенной яркости на изображении.

1   ...   4   5   6   7   8   9   10   11   ...   20



написать администратору сайта