методичка по геологии. Учебное пособие инженерная геология Лабораторные и практические занятия для студентов очного и заочного форм обучения всех специальностей строительных вузов
Скачать 10.27 Mb.
|
Пример выполнения задач 1-13. Для выяснения причин образования трещин в здании школы длиной 180 м. пробурены три скважины вдоль стены, описание которых даны ниже в таблице. В этой же таблице приведены глубины залегания уровней грунтовых вод (УГВ); статический и динамический вдоль стены здания, опишите процесс, который привел к деформации зданий. Описание буровых скважин
Геологическое строение участка. Участок неоднородный: два выдержанных по мощности слоя и линза песка. Известняк трещиноватый (С1) низкой прочности (Rс=3-1 МПа). Известняки в зависимости от структуры, текстуры и примесей обладают существенно разными физико-механическими свойствами. Наиболее прочными являются массивные мелкозернистые перекристализированные окварцовые известняки (Rс=100-200 МПа). Прочность массивов, сложенных карбонатными породами, в основном определяется их трещиноватостью различного происхождения. Кроме тектонических трещин по долинам рек часто прослеживаются трещины оседания. Блоки массивов разбиты на отдельные глыбы густой сетью трещин выветривания. Характер и интенсивность выветривания известняков во многом зависят от их структурных и текстурных особенностей. Наиболее стойкими к выветриванию являются массивные мелкозернистые окремнелые или окварцованные известняки, особенно же легко выветриваются плитчатые и рассланцовые разности. Аналогичная зависимость прослеживается и в процессе карстования известняков. При небольших нагрузках известняки практически не сжимаются, но под действием очень больших нагрузок в течении длительного времени они могут проявлять реологические свойства. Песок серый аллювиальный мелкий (aQ2) Аллювиальным песчаным отложениям свойственна неоднородность гранулометрического состава, обработанная круглая форма частиц, рыхлое сложение и т.п. В разрезе аллювиальных песков иногда прослеживается вполне определенная сортировка материала. Наличие сортировки напрямую связано с условиями формирования аллювиальных отложений. Вниз по склону и вверх по разрезу происходит постепенное увеличение дисперсности песка. С точки зрения инженерно-геологической оценки пригодности аллювиальных песков в качестве оснований сооружений следует иметь ввиду, что при их небольшой мощности и спорядическом размещении, а так же всегда рыхлом сложении, при выборе площадки строительства следует проводить тщательные инженерные изыскания непосредственно на изучаемом участке. Суглинок бурый аллювиальный(aQ2) Суглинки плохо дренируемых участков обычно имеют серо-сизый цвет, вследствие их оглиения и обогащения органическими веществами; на дренированных прирусловых участках цвет пород коричневато-бурый. Молодые пойменные суглинки обычно очень рыхлые, влажные и слабосвязные. Высыхание их сопровождается структурными изменениями, выражающиеся в появлении мельчайших трещинок, которые разбивают породу на отдельности направленной формы. По стенкам этих трещинок часто отлагаются оксиды железа бурового цвета, которые дополнительно увеличивают неоднородность строения отложений. Очень часто в разрезах глинистого аллювия наблюдается своеобразные темноцветные горизонты, обогащенные органическими веществами. Наличие таких горизонтов в толще аллювия ухудшают его свойства вследствие повышенного содержания органического материала, который повышает гидрофильность, влажность, набухаемость, сжимаемость и снижает сопротивление сдвигу аллювиальных суглинков. Гидрогеология участка. На данном участке присутствует грунтовая вода с глубиной залегания до откачки 1-3 м. Мощность водоносного слоя m=0,4-2,8 м, грунтовые воды безнапорны, но в районе 2-й скважины мы имеем местный напор в линзе песка, в результате которого образуется два грунтовых потока, с градиентами уклонов: I1=0,04 и I2=0,08. Питание грунтовой воды происходит за счет атмосферных осадков, так как поблизости нет водоемов и рек, а суглинок имеет среднюю водопроницаемость. Вследствие откачки воды УГВ понизился на 6-8 м и вода приобрела характер карстовой, циркулирующей по порам и трещинам известняка. Такая вода отличается интенсивным движением, непостоянством химического состава, резким изменением водообильности и т.д. Геологические процессы и явления На данном участке происходит карстово-суффозионный процесс. При фильтрации подземная вода совершает разрушительную работу. Из пород вымываются составляющие их мелкие частицы, это сопровождается оседанием поверхности земли, образованием провалов, воронок. В данном примере до откачки механическая суффозия происходит активно вблизи поверхности земли. Она возникает на контакте двух слоев: суглинка и песка, за счет разности коэффициентов фильтрации этих пород. После откачки резко изменились гидродинамические условия. Активность карстового процесса усилилась за счет резкого снижения базиса коррозии, увеличение трещиноватости известняка, наличия в нем пустот и каверн. Активизировалась также глубинная суффозия. Выводы и рекомендации - определяется категория сложности инженерно-геологических условий строительства; - делаются выводы о пригодности участка для строительства зданий и сооружений; - предлагаются рекомендуемые виды защитных мероприятий от негативного антропогенного воздействия. Категория сложности стройплощадки в зависимости от природных условий. 1. Геоморфологические – участок расположен в пределах одного геоморфологического элемента, поверхность наклонная – впадина до 3 м. Средняя категория сложности (II) 2. Геологические –три различных по литологии слоя, залегающих наклонно. Мощность одного из них не выдержана по простиранию. Скальный грунт - известняк трещиноватый имеет неровную поверхность перекрыт маломощными слоями наскальных грунтов. Средняя категория сложности (II) 3. Гидрогеологические – горизонт подземных вод с неоднородным химическим составом, обладающий напором Средняя категория сложности (II) 4. Физико-геологические процессы и явления, отрицательно влияющие на условия строительства и эксплуатацию здания имеют распространение, особенно после откачки воды. Сложная категория (III) Общий вывод – по наиболее сложному фактору – геодинамическому – площадку можно оценить как сложную (III категория) Для дальнейшего предотвращения разрушения стены здания следует:
Пример выполнения задач 14. К элювиальным отложениям относятся продукты выветривания остающихся на месте их образования. Выветривание – это процесс разрушения горных пород в результате действия физических, химических, биологических факторов. В процессе выветривания меняются прочность, структура, вещественный состав породы. Интенсивность выветривания зависит от геоморфологического, геологического строения района, климата, состава грунтов и т.д. Наиболее благоприятные условия складываются на водоразделах, пологих склонах, т.е. там, где продукты выветривания остаются на месте образования. Сверху вниз по разрезу выделяют зону сильного дробления пород (глинисто-щебенисто-песчаную), зону трещиноватую, зону коренных пород с отдельными трещинами. Элювий способен легко сползать. Выемки, заложенные в нем, страдают от оползания откосов. Как основание сооружений элювий недостаточно прочен в силу его значительной трещиноватости и пористости. Если с экономической точки зрения это выгодно, то элювий лучше удалить, а сооружение возводить на невыветрелой породе. Почва – это частный случай элювия. 7. Основы гидрогеологии. Определение скорости и направления движения грунтовых вод. Решение задач о движении подземных вод, выбор метода гидрогеологического расчета и расчетной схемы производят на основе схематизации (упрощения) природных гидрогеологических условий. При этом учитывают основные особенности фильтрационного потока подземных вод (характер движения, гидравлические характеристики, фильтрационные свойства пород, границы водоносных горизонтов и т.д.). Типичным примером плоского потока может служить движение подземных вод к траншеям, штольням и другим горизонтальным выработкам. Расход безнапорного потока в однородных пластах при горизонтальном водоупоре: , (7.1) где Кф – коэффициент фильтрации; b – ширина потока, м; – средняя мощность потока, м; – средний напорный градиент потока. Принимая и , расход грунтового потока можно выразить формулой , (7.2) где h1 и h2 – мощность водоносного пласта соответственно в скважинах 1 и 2; L – расстояние между скважинами. Единичный расход потока при наклонном водоупоре определяют по формуле: , (7.3) где Н1 и Н2 – напоры соответственно в скважинах 1 и 2, отсчитываемые от любой горизонтальной плоскости; b – ширина потока, принимаемая при определении единичного расхода, равной одному метру. Мощность водоносного пласта в скважинах вычисляют как разность абсолютных отметок уровня грунтовых вод (УГВ) и кровли водоупора. Значения Н1 и Н2 принимают равными абсолютным отметкам УГВ в скважинах 1 и 2. Рис. 7.1. Схематический разрез потока грунтовых вод на наклонном водоупоре. При определении притока воды к вертикальным водозаборам учитывается воронкообразное понижение уровня вследствие трения воды и частиц грунта, при этом образуется депрессионная воронка, имеющая в плане форму, близкую к кругу. Радиус депрессионной воронки называется радиусом влияния (R), который в безнапорном водоносном пласте для совершенной скважины определяется по формуле: , (7.4) где S – понижение уровня воды при откачке по центру воронки, м; H – мощность безнапорного водоносного пласта, м. Приток воды к совершенным безнапорным скважинам определяется по формуле: при L 0,5 R, (7.5) при L < 0,5 R, (7.6) где h – уровень воды в скважине после откачки; . Рис. 7.2. Расчетная схема для определения притока воды к совершенной скважине, расположенной на берегу реки (водоема) в безнапорном водоносном пласте. Дебит совершенной скважины, питаемой напорными водами: , (7.7) где m – мощность водоносного пласта; – радиус влияния совершенной напорной скважины. Рис. 7.3. Расчетная схема для определения притока воды к скважине в напорном водоносном горизонте. При проектировании и строительстве сооружений для выявления характера поверхности (зеркала) грунтовых вод составляется карта гидроизогипс. Гидроизогипсами называются линии, соединяющие точки с равными абсолютными отметками зеркала грунтовых вод. Эти линии аналогичны горизонталям рельефа местности и подобно им отражают рельеф зеркала грунтовых вод. Для построения карты гидроизогипс замеряют уровни грунтовых вод в скважинах, которые на изучаемой территории располагают по сетке. Уровни воды пересчитывают на абсолютные отметки и по ним на топографической карте проводят горизонтали поверхности грунтовых вод. Как и горизонтали топографической карты, гидроизогипсы строят методом интерполяции или с помощью палеток, причем сечение их зависит от масштаба карты и числа нанесенных на ней точек наблюдения (отметок уровня). Карта изогипс широко используется для установления направления потока грунтовых вод, величины напорного градиента, глубины залегания воды, а также для подсчета скорости движение воды. Направление движения грунтовых вод определяют путем опускания перпендикуляра от гидроизогипсы с большой отметкой на гидроизогипсу с меньшей отметкой. Направление грунтового потока совпадает с этим перпендикуляром. Для определения уклона потока по карте гидроизогипс на площади того или иного участка берут разность между отметками крайних гидроизогипс на этом участке и делят ее на расстояния между ними. Глубину залегания грунтовых вод в любой точке определяют по разности между отметкой горизонтали поверхности земли и отметкой гидроизогипсы в данной точке. Скорость фильтрации воды определяется по формуле V=KI, где V – скорость, K – коэффициент фильтрации, I – напорный градиент. Поверхность грунтовых вод, как показывают инженерно-геологические исследования крупных площадей, большей частью неровная, волнистая. Часто она повторяет рельеф поверхности. Однако такое соотношение поверхности земли и поверхности грунтовых вод на отдельных участках может нарушаться. Глубина залегания грунтовых вод также зависит от рельефа местности. В речных долинах, оврагах и других понижениях рельефа грунтовые воды находятся на сравнительно небольшой глубине. По мере повышения рельефа глубина залегания грунтовых вод увеличивается. На водоразделах и других возвышенностях глубина залегания может достигать несколько десятков метров. Таким образом, с помощью карты гидроизогипс решаются следующие основные задачи. Это установление характера поверхности (зеркала) грунтовых вод, направление их течения, величины напорного градиента, скорости движения воды, глубины залегания грунтовых вод с целью наиболее благоприятных участков для строительства зданий и сооружений с глубоко залегающими фундаментами. ЗАДАЧИ 1. Постройте схему и определите единичный расход грунтового потока по результатам замеров, выполненных в двух скважинах, расположенных на расстоянии 200 м по направлению течения, если коэффициент фильтрации однородных водовмещающих пород равен 5,2 м/сут. Определите действительную скорость потока. Таблица 7.1.
2. По данным, приведенным в таблице 7.2, постройте схему и определите приток воды к совершенной скважине с круговым контуром питания при горизонтальном водоупоре. Таблица 7.2.
3. По данным, приведенным в таблице 7.3, постройте схему и определите приток воды к совершенной скважине, расположенной в напорном водоносном пласте. Таблица 7.3.
8. Инженерно-геологические изыскания Цель инженерно-геологических исследований - получить необходимые для проектирования объекта инженерно-геологические материалы. В задачи исследований входит изучение геологического строения, геоморфологии, гидрогеологических условий, природных геологических и инженерно-геологических процессов, свойств горных пород и прогноз их изменений при строительстве и эксплуатации различных сооружений. Инженерно-геологические исследования под постройку отдельных зданий и сооружений производятся на конкретном участке, где будут размещены здания. Объем проводимых на ней работ зависит от вида (назначения) здания, уровня его ответственности, сложности инженерно-геологических условий площадки строительства. Установлено три уровня ответственности зданий и сооружений: I-повышенный, II - нормальный, III - пониженный. Повышенный уровень ответственности следует принимать для зданий и сооружений, отказы которых могут привести к тяжелым экономическим, социальным и экологическим последствиям (резервуары для нефти и нефтепродуктов вместимостью 10000 м3 и более, магистральные трубопроводы, производственные здания с пролетами 100 м и более, сооружения связи высотой 100 м и более, а также уникальные здания и сооружения). Нормальный уровень ответственности следует принимать для зданий и сооружений массового строительства (жилые, общественные, производственные, сельскохозяйственные здания и сооружения). Пониженный уровень ответственности следует принимать для сооружений сезонного или вспомогательного назначения (парники, теплицы, летние павильоны, небольшие склады и подобные сооружения). Категории сложности инженерно-геологических условий приведены в Приложении 3. Инженерно-геологические работы выполняются в следующем порядке: вначале проводят сбор и анализ материалов ранее проводимых изысканий. В соответствии с этим намечается программа исследования. Далее участок изучают разведочными выработками, которые позволяют установить состав и мощность пород, условия их залегания. Отобранные при этом образцы грунтов и пробы подземных вод направляют на лабораторные исследования. Выполненные исследования обобщают и представляют в виде заключения об инженерно-геологических условиях площадки. К заключению прилагают план расположения выработок, разрезы, таблицы. Это служит основанием для составления проекта застройки отдельного здания. Разведочные выработки выполняются в виде скважин и шурфов. Диаметр скважин, используемых в практике инженерно-геологических исследовании, обычно находится в пределах 100-150 мм. Размер шурфов в плане зависит от их предполагаемой глубины. Чаще всего это 11 м, 11,5 м, 1,51,5 м. Обычно глубина шурфа бывает 2-3 м, максимально до 4-5 м. Количество шурфов по отношению к скважинам составляет 1:10 – 1:20. Скважины и шурфы следует располагать по контурам или осям проектируемого здания, в местах резкого изменения нагрузок на фундаменты, глубины их заложения, на границах различных геоморфологических элементов. Расстояние между скважинами устанавливается в зависимости от сложности инженерно-геологических условий и уровня ответственности проектируемого здания по табл. 8.1: Таблица 8.1
Общее количество горных выработок в пределах контура каждого здания и сооружения II уровня ответственности должно быть, как правило, не менее трех, включая выработки, пройденные ранее, а для зданий и сооружений I уровня ответственности — не менее 4—5 (в зависимости от их вида). При расположении группы зданий и сооружений II и III уровней ответственности, строительство которых осуществляется по проектам массового (типовым) и повторного применения, а также для технически несложных объектов на участке с простыми и средней сложности инженерно-геологическими условиями, размеры которого не выходят за пределы максимальных расстояний между горными выработками, выработки в пределах контура каждого здания и сооружения могут не предусматриваться, а общее их количество допускается ограничивать пятью выработками, располагаемыми по углам и в центре участка. На участках отдельно стоящих зданий и сооружений III уровня ответственности (складские помещения, павильоны, подсобные сооружения и т.п.), размещаемых в простых и средней сложности инженерно-геологических условиях, следует проходить 1-2 выработки. Глубины горных выработок при изысканиях для зданий и сооружений, проектируемых на естественном основании, следует назначать в зависимости от величины сжимаемой толщи с заглублением ниже нее на 1-2 м. При отсутствии данных о сжимаемой толще грунтов оснований фундаментов глубину горных выработок следует устанавливать в зависимости от типов фундаментов и нагрузок на них (этажности) по таблице 8.2: Таблица 8.2
Глубину горных выработок при плитном типе фундаментов (ширина фундаментов более 10 м) следует устанавливать по расчету, а при отсутствии необходимых данных глубину выработок следует принимать равной половине ширины фундамента, но не менее 20 м для нескальных грунтов. При этом расстояние между выработками должно быть не более 50 м, а количество выработок под один фундамент — не менее трех. При нагрузке на куст висячих свай свыше 3000 кН, а также при свайном поле под всем сооружением глубину 50% выработок в нескальных грунтах следует устанавливать ниже проектируемой глубины погружения нижнего конца свай, как правило, не менее чем на 10 м. Глубину горных выработок при опирании или заглублении свай в скальные грунты следует принимать ниже проектируемой глубины погружения нижнего конца свай не менее чем на 2 м. Для свай, работающих только на выдергивание, глубину выработок следует принимать на 1 м ниже проектируемой глубины погружения нижнего конца свай. Из буровых скважин, шурфов, обнажений и других выработок производят отбор образцов для исследований. Пробы отбирают послойно, на всю глубину выработки, но не реже чем через каждые 0,5-1,0 м. Из всех образцов, полученных при инженерно-геологических исследованиях, 5-10% отбирают для последующих лабораторных анализов. По данным бурения скважин составляются буровые колонки, или, чаще всего, инженерно-геологические разрезы по скважинам. Пример построения геологических разрезов см. в разделе 5 (Геологические карты и разрезы). Физико-механические характеристики грунтов по результатам испытаний оформляют в виде таблицы 8.3. Таблица 8.3
За последние годы большое распространение получило изучение грунтов в полевых условиях (опытные работы), непосредственно в условиях их естественного залегания. Это сокращает количество разведочных выработок, объем лабораторных работ и в ряде случаев дает возможность определить прочностные, деформативные и другие характеристики грунтов с точностью большей, чем при лабораторных работах. В некоторых случаях, для зданий более 5 этажей, испытания грунтов на площадке опытными нагрузками являются обязательными. Опытные работы используются для изучения:
Итогом инженерно-геологических исследований, их заключительным звеном является инженерно-геологический отчет. В состав отчета обычно входит четыре части: общая, специальная, графические приложения и инженерно-геологическая записка. Общая часть отчета начинается с введения, в котором указываются цели и задачи исследований, состав, объем и характеристика выполненных работ, состав исполнителей и сроки работ. Далее приводится описание гидрографии, климата, дается характеристика рельефу, климатическим особенностям (температура, осадки, промерзание грунтов, направление ветров). В главе «геология района» приводится весь материал по геологическому строению, тектонике, в главе «гидрогеология» описываются подземные воды, условия их питания, состав, агрессивность, фильтрационные свойства пород и др. Далее детально описываются «Природные геологические явления и инженерно-геологические процессы», которые могут повлиять на строительство и эксплуатацию сооружения. Специальная часть отчетов содержит методику исследований, физико-механические свойства грунтов, инженерно-геологические условия строительства. В конце отчета дается заключение с основными выводами по всем разделам. К отчету прилагают различный графический материал (карты, разрезы, колонки разведочных выработок). В практике инженерно-геологических исследований очень часто вместо больших отчетов приходится составлять инженерно-геологические заключения. Выделяются три вида заключений: 1) по условиям строительства объекта 2) о причинах деформаций зданий и сооружений 3) экспертиза В первом случае заключение носит характер сокращенного заключения и может быть выполнено для строительства отдельного здания. Заключение о причинах деформаций зданий и сооружений могут иметь различное содержание и объем. Заключение должно вскрыть причины деформаций и наметить пути их устранения. Экспертиза силами крупных специалистов устанавливает: правильность приемов исследований, достаточность объемов работ, правомерность выводов и рекомендаций и т.д. |