Главная страница
Навигация по странице:

  • Аналитический метод

  • Капица С.П.

  • 8.3.2. Метод компонент, или метод передвижки возрастов

  • Bogue D.J.

  • Медков В.М. Демография, учебное пособие. Учебное пособие. Серия Учебники и учебные пособия


    Скачать 2.69 Mb.
    НазваниеУчебное пособие. Серия Учебники и учебные пособия
    АнкорМедков В.М. Демография, учебное пособие.doc
    Дата28.01.2017
    Размер2.69 Mb.
    Формат файлаdoc
    Имя файлаМедков В.М. Демография, учебное пособие.doc
    ТипУчебное пособие
    #497
    КатегорияСоциология. Политология
    страница42 из 48
    1   ...   38   39   40   41   42   43   44   45   ...   48

    Экстраполяционный метод


    Экстраполяционный метод основан на прямом использовании линейной и экспоненциальной функций, т.е. данных о среднегодовых абсолютных изменениях численности населения за период или о среднегодовых темпах роста или прироста. Если эти показатели известны, то можно рассчитать численность населения на любое число лет вперед, просто предположив их неизменность на протяжении всего прогнозного периода.

    Один из простейших способов прогнозирования основан на предположении о том, что среднегодовые абсолютные приросты численности населения, рассчитанные для отчетного периода времени, сохранятся и в будущем.

    Иначе говоря, в этом случае для перспективного расчета применяется линейная функция



    где Р0 иРt- численность населения соответственно в моменты времени 0 и t Δ - абсолютный среднегодовой прирост, t- время в годах.

    Пусть, например, нам известна численность населения Новосибирской области по данным переписей населения 1979 и 1989 гг. (2618 тыс. человек и 2782 тыс. человек соответственно). Определить численность населения Новосибирской области на 1 января 2000 г. при предположении неизменности ее абсолютных среднегодовых приростов**. Для этого сперва рассчитаем величину абсолютных среднегодовых приростов:



    * Данное разделение не является общепринятым. ** Мы сейчас оставляем в стороне заведомую нереальность такого предположения.

    325

    Численность населения Новосибирской области на 1 января 2000 г. будет равна:

    Р2000 =2782 + 16,4 • 11= 2962,4 тыс. чел.

    В реальности для прогнозирования численности населения линейная функция практически не используется, поскольку предположение о неизменности абсолютных среднегодовых приростов может быть относительно верным только для очень кратких периодов времени (не более 5 лет).

    Несколько более реалистичным является предположение о неизменности среднегодовых темпов прироста численности населения, особенно при допущении неизменных уровней рождаемости и смертности и отсутствии миграции. В этом случае речь идет об использовании в прогнозировании экспоненциальной функции, о которой шла речь в главе 3:

    Рt = Р0 еrt ,

    где r- среднегодовые темпы прироста, t - время в годах, е - основание натуральных логарифмов.

    Применим эту формулу для оценки численности населения Новосибирской области на 1 января 2000 г., используя приведенные выше данные. Рассчитаем прежде всего среднегодовые темпы прироста



    Определим численность населения Новосибирской области на 1 января 2000 г., используя вычисленное значение среднегодовых темпов прироста:

    Р2000=2782 *е0'00607'11 =2782 *1,06905 =2974,1 тыс. чел.

    Аналитический метод

    Как видно, расчет по экспоненциальной функции дал для Новосибирской области большую численность на 1 января 2000 г., чем расчет по линейной функции. Это отражает большую скорость изменения в случае роста по экспоненте. Тем не менее для кратких периодов (не более 15 лет) применение обеих функций дает сходные результаты. Однако в случае, если имеет место уменьшение численности населения, как сейчас происходит в большинстве регионов России, то более предпочтительным является ислользо-

    326

    вание экспоненциальной функции, т.к. это гарантирует, что численность населения не станет отрицательной. Экстраполяционный метод применим только при отсутствии резких колебаний рождаемости, смертности и миграции.

    Аналитический метод основан на том, что исходя из прошлой демографической динамики подбирается функция, наиболее близко ее описывающая. В принципе это может быть любая функция. Однако в любом случае эта функция носит эмпирический характер, и не существует никакого общего математического закона демографической динамики5.

    Математические выражения, которые используют
    ся для описания роста населения, являются по необ
    ходимости эмпирическими; не может быть найде
    но никакого закона роста населения, хотя некото
    рые математические уравнения определялись имен
    но как таковой закон. При построении уравнения или
    кривой, соответствующих данным переписей насе
    ления, в одном случае исходят из предположения,
    что численность населения является полиномиаль
    ной степенной функцией от времени:
    Pt=a + bt+ct2 +dt3 +...,


    где константы а, b, с, d, ...оцениваются с помощью подходящей техники, например, с помощью метода наименьших квадратов. Если оцениваются только константы а и b, то получаем просто линейную функцию; добавление других констант означает переход к квадратичной параболе или к параболам более высоких порядков. Например, Pritchett использовал кубическую параболу для данных переписей США с 1790 по 1880 год и экстраполировал данные о численности населения на будущее. Spiegelman M. Introduction to Demography. Cambridge, MA. 1968. P. 406.

    Конкретный вид функции подбирается исходя из вида эмпирической кривой, а также гипотезы о связи численности населения с временем как независимой переменной. Один класс такого рода гипотез приведен во вставке. Если же предположить, что изменение численности населения за бесконечно малый промежуток времени является функцией численности населения, то получают другие математические выражения.

    327

    Одним из них является экспоненциальная функция с ненулевым постоянным членом, или рост (убыль) населения в геометрической прогрессии, рассмотренный выше в этом параграфе, а также в главе 3.

    Другим примером такого рода функций является широко применяемая в перспективном исчислении численности населения логистическая* функция (кривая Ферхюлста-Пйрла-Рида), особенность которой состоит в том, что ее приращение уменьшается по мере роста численности населения. Остановимся несколько подробнее на этой функции, учитывая ее роль в истории демографии.

    Логистическая функция выражается следующей формулой6:



    Здесь Pt- численность населения в момент времени t,b- постоянная интеграции, 1/a - некая предельная численность, к которой асимптотически приближается численность населения с ростом t,u - параметр, определяющий конкретный вид кривой. Логистическая кривая симметрична относительно точки перегиба, которая равна 1/2а. При малых значениях Р темпы его прироста практически постоянны и равны приблизительно и. С другой стороны, если значения Р велики и близки к На, темпы его прироста стремятся к 0.

    Идея логистической функции была впервые высказана А. Кетле в 1835 г. и позже (в 1838 г.) аналитически выведена бельгийским математиком Пьером Франсуа Ферхюлстом (Verhulst) (1804-1849). Ферхюлст пытался найти кривую, описывающую ситуацию «автонасыщения», которая предполагает существование некоторой предельной для данных конкретных условий численности населения. По мере приближения к этой предельной численности рост населения замедляется вследствие действия неких сил сопротивления, мешающих этому росту. Поиск такого рода функции был необходим А. Кетле для опровержения так называемого «закона народонаселения» Т.Р. Маль-

    От греч. Люуктшке - искусство вычислять, рассуждать. От этого же слова происходит название модной в наше время специальности - логистики.

    328

    туса. Этот «закон», исходит из того, что не ограничиваемый ничем рост населения происходит в геометрической прогрессии (по экспоненциальной функции). По словам. Кетле, в действительности экспоненциальный рост не имеет места из-за того, что «сопротивление или сумма препятствий его увеличению, при прочих равных условиях, действует как квадрат скорости, с какой население имеет тенденцию роста»7. Развивая эту идею, Ферхюлст и вывел указанную выше функцию.

    Затем логистическая кривая была надолго забыта и вновь выведена американскими биологами Р. Пирлом (1879-1940) и Л. Ридом, исследовавшими закономерности динамики популяции мух дрозофил. В 1920 г. Пирл и Рид опубликовали статью под названием «О темпах роста населения Соединенных Штатов с 1790 г. и их математическом выражении», в которой они распространили выведенную ими закономерность на человеческое население и применили логистическую кривую для прогнозирования численности населения США8. Формула, выведенная Пирлом и Ридом, имела следующий вид9:



    Как показало сравнение расчетных данных с итогами последующих переписей населения США, полученные данные хорошо согласуются с численностью населения по переписи 1930 г., превышают на 5 миллионов численность населения по переписи 1940 г., недооценивают более чем на 2 миллиона численность населения по переписи 1950 г. и далеко расходятся с итогами последующих переписей10. Основная причина этих расхождений заключается не только в том, что прогноз не учитывал внешнюю миграцию в США, но и в том, что его авторы фактически игнорировали вероятность изменения репродуктивного поведения населения, предположив неизменность показателей рождаемости на протяжении всего прогнозного периода. Точно так же прогноз Пирла и Рида не учитывал изменения в смертности.

    Известен также опыт применения логистической функция для прогноза численности населения СССР. В 1930 г. отечественный биолог Г.Ф. Гаузе опубликовал свой прогноз, основанный на использовании логистической функции11.

    Как и рассмотренные выше линейная и экспоненциальная функции, логистическая функция не может отражать динамику реальных населений в сколько-нибудь длительной перспекти-

    . 329

    ве. Она может использоваться, главным образом, для прогнозирования численности небольших территорий на краткие периоды времени. Условием качественности прогноза и в данном случае является контроль с помощью данных о численности населения всей страны. Перспективные расчеты с помощью логистической функции требуют знания численности населения на три равноудаленных момента времени (или на другое кратное трем их число) или задания численности населения на два равноудаленных момента времени и нижней и верхней асимптот. При этом, если нижняя асимптота может быть принята за О, для определения верхней асимптоты не существует никакой разумной процедуры, которая давала бы перспективное значение максимальной численности населения.

    Тем не менее логистическая функция может использоваться для прогнозирования небольших территорий, если общая численность населения страны используется как контрольная величина для суммарного населения всех регионов. В этом случае вместо расчета численности населения региона прогнозируются доли населения каждого региона в общей численности населения страны. Поскольку доля может изменяться только в пределах от 0 до 1, эти величины могут использоваться как нижняя и верхняя асимптоты логистической кривой.

    Зная прогнозные значения этих долей и прогнозную величину численности населения всей страны, можно определить и будущую численность населения каждого из регионов.

    В настоящее время разработаны специальные компьютерные программы, которые позволяют прогнозировать динамику численности населения с помощью логистической функции. В качестве примера укажем здесь разработанную Э. Арриагой из Международного Программного Центра Бюро цензов США систему специальных электронных таблиц PAS12.

    Хотя, как было сказано выше, не существует и не может существовать никакого универсального математического закона, описывающего динамику численности населения, тем не менее в демографии известны многочисленные попытки найти подобный закон. В частности, весьма популярны попытки вывести гиперболический закон роста населения Земли. В качестве примера подобных попыток можно указать на гиперболический закон роста численности населения Земли, который опубликован в наделавшей в свое время много шума книге советского астронома И.С. Шкловского «Вселенная. Жизнь. Разум»13:

    330



    Здесь в числителе приведена предельная численность населения Земли в миллионах человек, а в знаменателе - конечный год (2030) и календарное время. Аналогичную формулу вывели также Маккендрик и Хорнер. Она приводится в книге С.П. Капицы «Теория роста населения Земли»14:



    Это выражение, по словам С.П. Капицы, «с удивительной точностью описывает рост населения Земли в течение сотен и даже многих тысяч лет». Правда, далее автор оговаривается, что применимость такого рода формул ограничена (См.: вставку).

    Во-первых, по мере приближения к 2025 году население мира будет стремиться к бесконечности. Этот вывод, благодаря которому эта формула получила некоторое распространение, и заставил некоторых считать 2025 год как время наступления Судного Дня. Во-вторых, и в далеком прошлом получается столь же абсурдный результат, поскольку при сотворении Вселенной 20 миллиардов лет тому назад должно было присутствовать 10 человек, несомненно обсуждавших все величие происходящего. Капица С.П. Теории роста населения Земли. М., 1997. С. 23.

    Эзотеричность и абсурдность подобных игр в математику, игнорирующих собственно человеческую, социальную природу демографических явлений, то, что за любыми изгибами динамики численности населения, изменений рождаемости и смертности, брачности и разводимости и миграции стоит человек со своими интересами, потребностями, устремлениями и мотивами, в общем-то понятны. Тем не менее математики (да и физики тоже), к сожалению, играют в подобные игры, создавая впечатление, что население ничем не отличается от биологических популяций. И тот же С.П. Капица в своем интервью газете «Известия» весной 2001 г. утверждал, ссылаясь на приведенную выше формулу Маккендрика и Хорнера, что к 2025 г. прирост населения прекратится и выйдет на стабильную отмет-

    331

    ку 13-14 миллиардов человек. И это утверждается, несмотря на опубликованные официальные (и заведомо преувеличенные) прогнозы ООН, что численность населения Земли стабилизируется к 2150 г, и ни при каких условиях не будет к тому времени превышать 11 миллиардов человек! Воистину за деревьями (формулами) не видим леса (реального человеческого общества). В настоящее время разработаны специальные компьютерные программы, позволяющие прогнозировать динамику численности населения с помощью различных аналитических функций. Аналитический метод имеет те же ограничения, что и экстраполяционный. Он может применяться только для кратких периодов времени, для которых предположение о неизменности характера зависимости между временем и численностью населения остается более или менее правдоподобным. Однако в периоды резких экономических и социальных перемен, когда радикально меняется вся социальная структура, применение этих методов становится абсолютно неправомерным. Как совершенно справедливо подчеркивал М. Шпигельман (М. Spiegelman), автор одного из наиболее авторитетных учебников демографии15, слабостью методов прогнозирования, основанных на применении математических функций, является то, что тенденции, выведенные из прошлой динамики, молчаливо продлеваются без изменений в будущее. «В этой связи, - продолжает М. Шпигельман, - более обоснованным является применение в целях демографического прогнозирования метода компонент»16. К его рассмотрению мы переходим в следующей части данного параграфа.

    8.3.2. Метод компонент, или метод передвижки возрастов

    Метод компонент открывает перед разработчиками демографического прогноза более широкие возможности. В отличие от экстраполяционного и аналитического он позволяет получать не только общую численность населения, но и его распределение по полу и возрасту*.

    Метод компонент разработан американским демографом П.К. Уэлптоном (Р.К. Whelpton, 1893-1964). См.: Bogue D.J. Techniques for Making Population Projections: Age-Sex Projections. Chicago, 1980. P. 8. Reprinted in: Readings in Population Research Methodology. Volume 5. Population Models, Projections and Estimates. Chicago, 1993. P. 17-7- 17-10.

    332

    Двойное название данного метода демографического прогнозирования (метод компонент, или метод передвижки возрастов) связано с тем, во-первых, что его применение основано на использовании уравнения демографического баланса, о котором шла речь в главе 3:



    гдеP0и P1 - численность населения соответственно в начале и конце периода (года); В - число рождений за период; D- число смертей за период; Мi - миграционный приток за период; М0 - миграционный отток за период. При этом В, D, Miи М0называются компонентами изменения численности населения за период (год).

    Во-вторых, с тем, что данные о численности отдельных возрастно-половых групп передвигаются каждый год в следующий возраст, а численность нулевой возрастной группы определяется на основании прогноза годового числа рождений и младенческой смертности.

    Суть метода компонент заключается в «отслеживании» движения отдельных когорт во времени в соответствии с заданными (прогнозными) параметрами рождаемости, смертности и миграции. Если эти параметры зафиксированы в некоторый начальный момент времени t0, оставаясь затем неизменными на протяжении периодато это однозначно определяет численность и структуру населения в момент времени t0+ t

    Начиная с момента времени tо, численность населения каждого отдельного возраста уменьшается в соответствии с прогнозными повозрастными вероятностями смерти. Из исходной численности населения каждого возраста вычитается число умерших, а оставшиеся в живых становятся на год старше. Прогнозные повозрастные уровни рождаемости используются для определения числа рождений на каждый год прогнозного периода. Родившиеся также начинают испытывать риск смерти в соответствии с принятыми ее уровнями. Метод компонент учитывает также повозрастные интенсивности миграции (прибытия и выбытия).

    Процедура повторяется для каждого года прогнозного периода. Тем самым определяется численность населения каждого возраста и пола, общая численность населения, общие коэффициенты рождаемости, смертности, а также коэффициенты общего и естественного прироста. При этом прогнозные расчеты могут производиться как для однолетних возрастных интерва-
    1   ...   38   39   40   41   42   43   44   45   ...   48


    написать администратору сайта