Главная страница

программа. Рабочая программа по матматике 5 класс. Учебного предмета Математика для 5 класса основного общего образования


Скачать 47.03 Kb.
НазваниеУчебного предмета Математика для 5 класса основного общего образования
Анкорпрограмма
Дата09.10.2022
Размер47.03 Kb.
Формат файлаdocx
Имя файлаРабочая программа по матматике 5 класс.docx
ТипРабочая программа
#722506

 


РАБОЧАЯ ПРОГРАММА
(ID 3627707)


учебного предмета

«Математика»

для  5 класса основного общего образования

на 2022-2023 учебный год

Составитель: Коннова Мария Александровна,

учитель математики
г. Новочебоксарск, 2022 г.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА "МАТЕМАТИКА" 

Рабочая программа по математике для обучающихся 5 классов разработана на основе Федерального государственного образовательного стандарта основного общего образования с учётом и современных мировых требований, предъявляемых к математическому образованию, и традиций российского образования, которые обеспечивают овладение ключевыми компетенциями, составляющими основу для непрерывного образования и саморазвития, а также целостность общекультурного, личностного и познавательного развития обучающихся. В рабочей программе учтены идеи и положения Концепции развития математического образования в Российской Федерации. В эпоху цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным современным человеком без базовой математической подготовки. Уже в школе математика служит опорным предметом для изучения смежных дисциплин, а после школы реальной необходимостью становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической.

Это обусловлено тем, что в наши дни растёт число профессий, связанных с непосредственным применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в гуманитарных сферах. Таким образом, круг школьников, для которых математика может стать значимым предметом, расширяется.

Практическая полезность математики обусловлена тем, что её предметом являются фундаментальные структуры нашего мира: пространственные формы и количественные отношения от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и прикладных идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять расчёты и составлять алгоритмы, находить и применять формулы, владеть практическими приёмами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм и графиков, жить в условиях неопределённости и понимать вероятностный характер случайных событий.

Одновременно с расширением сфер применения математики в современном обществе всё более важным становится математический стиль мышления, проявляющийся в определённых умственных навыках. В процессе изучения математики в арсенал приёмов и методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений, правила их конструирования раскрывают механизм логических построений, способствуют выработке умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике и в формировании алгоритмической компоненты мышления и воспитании умений действовать по заданным алгоритмам, совершенствовать известные и конструировать новые. В процессе решения задач — основой учебной деятельности на уроках математики — развиваются также творческая и прикладная стороны мышления.

Обучение математике даёт возможность развивать у обучающихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления.

Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методах математики, их отличий от методов других естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общей культуры человека.

Изучение математики также способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА

Приоритетными целями обучения математике в 5 классе являются:

  • продолжение формирования основных математических понятий (число, величина, геометрическая фигура), обеспечивающих преемственность и перспективность математического образования обучающихся; 

  • развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, интереса к изучению математики; 

  • подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира; 

  • формирование функциональной математической грамотности: умения распознавать математические объекты в реальных жизненных ситуациях, применять освоенные умения для решения практико-ориентированных задач, интерпретировать полученные результаты и оценивать их на соответствие практической ситуации.

Основные линии содержания курса математики в 5 классе — арифметическая и геометрическая, которые развиваются параллельно, каждая в соответствии с собственной логикой, однако, не независимо одна от другой, а в тесном контакте и взаимодействии. Также в курсе происходит знакомство с элементами алгебры и описательной статистики.

Изучение арифметического материала начинается со систематизации и развития знаний о натуральных числах, полученных в начальной школе. При этом совершенствование вычислительной техники и формирование новых теоретических знаний сочетается с развитием вычислительной культуры, в частности с обучением простейшим приёмам прикидки и оценки результатов вычислений. 

Другой крупный блок в содержании арифметической линии — это дроби. Начало изучения обыкновенных и десятичных дробей отнесено к 5 классу. Это первый этап в освоении дробей, когда происходит знакомство с основными идеями, понятиями темы. При этом рассмотрение обыкновенных дробей в полном объёме предшествует изучению десятичных дробей, что целесообразно с точки зрения логики изложения числовой линии, когда правила действий с десятичными дробями можно обосновать уже известными алгоритмами выполнения действий с обыкновенными дробями. Знакомство с десятичными дробями расширит возможности для понимания обучающимися прикладного применения новой записи при изучении других предметов и при практическом использовании.

При обучении решению текстовых задач в 5 классе используются арифметические приёмы решения. Текстовые задачи, решаемые при отработке вычислительных навыков в 5 классе, рассматриваются задачи следующих видов: задачи на движение, на части, на покупки, на работу и производительность, на проценты, на отношения и пропорции. Кроме того, обучающиеся знакомятся с приёмами решения задач перебором возможных вариантов, учатся работать с информацией, представленной в форме таблиц или диаграмм.

В Примерной рабочей программе предусмотрено формирование пропедевтических алгебраических представлений. Буква как символ некоторого числа в зависимости от математического контекста вводится постепенно. Буквенная символика широко используется прежде всего для записи общих утверждений и предложений, формул, в частности для вычисления геометрических величин, в качестве «заместителя» числа.

В курсе «Математики» 5 класса представлена наглядная геометрия, направленная на развитие образного мышления, пространственного воображения, изобразительных умений. Это важный этап в изучении геометрии, который осуществляется на наглядно-практическом уровне, опирается на наглядно-образное мышление обучающихся. Большая роль отводится практической деятельности, опыту, эксперименту, моделированию. Обучающиеся знакомятся с геометрическими фигурами на плоскости и в пространстве, с их простейшими конфигурациями, учатся изображать их на нелинованной и клетчатой бумаге, рассматривают их простейшие свойства. В процессе изучения наглядной геометрии знания, полученные обучающимися в начальной школе, систематизируются и расширяются.

МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ

Согласно учебному плану в 5 классе изучается интегрированный предмет «Математика», который включает арифметический материал и наглядную геометрию, а также пропедевтические сведения из алгебры. Учебный план на изучение математики в 5 классе отводит не менее 5 учебных часов в неделю, всего  170 учебных часов.

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА "МАТЕМАТИКА"

Натуральные числа и нуль

Натуральное число. Ряд натуральных чисел. Число 0. Изображение натуральных чисел точками на координатной (числовой) прямой. Позиционная система счисления. Римская нумерация как пример непозиционной системы счисления. Десятичная система счисления. Сравнение натуральных чисел, сравнение натуральных чисел с нулём. Способы сравнения. Округление натуральных чисел. Сложение натуральных чисел; свойство нуля при сложении. Вычитание как действие, обратное сложению. Умножение натуральных чисел; свойства нуля и единицы при умножении. Деление как действие, обратное умножению. Компоненты действий, связь между ними. Проверка результата арифметического действия. Переместительное и сочетательное свойства (законы) сложения и умножения, распределительное свойство (закон) умножения. Использование букв для обозначения неизвестного компонента и записи свойств арифметических действий. Делители и кратные числа, разложение на множители. Простые и составные числа. Признаки делимости на 2, 5, 10, 3, 9. Деление с остатком. Степень с натуральным показателем. Запись числа в виде суммы разрядных слагаемых. Числовое выражение. Вычисление значений числовых выражений; порядок выполнения действий. Использование при вычислениях переместительного и сочетательного свойств (законов) сложения и умножения, распределительного свойства умножения.

Дроби

Представление о дроби как способе записи части величины. Обыкновенные дроби. Правильные и неправильные дроби. Смешанная дробь; представление смешанной дроби в виде неправильной дроби и выделение целой части числа из неправильной дроби. Изображение дробей точками на числовой прямой. Основное свойство дроби. Сокращение дробей. Приведение дроби к новому знаменателю. Сравнение дробей. Сложение и вычитание дробей. Умножение и деление дробей; взаимно-обратные дроби. Нахождение части целого и целого по его части.

Решение текстовых задач

Решение текстовых задач арифметическим способом. Решение логических задач. Решение задач перебором всех возможных вариантов. Использование при решении задач таблиц и схем. Решение задач, содержащих зависимости, связывающие величины: скорость, время, расстояние; цена, количество, стоимость. Единицы измерения: массы, объёма, цены; расстояния, времени, скорости. Связь между единицами измерения каждой величины. Решение основных задач на дроби. Представление данных в виде таблиц, столбчатых диаграмм.

Наглядная геометрия

Наглядные представления о фигурах на плоскости: точка, прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Угол. Прямой, острый, тупой и развёрнутый углы. Длина отрезка, метрические единицы длины. Длина ломаной, периметр многоугольника. Измерение и построение углов с помощью транспортира. Наглядные представления о фигурах на плоскости: многоугольник; прямоугольник, квадрат; треугольник, о равенстве фигур. Изображение фигур, в том числе на клетчатой бумаге. Построение конфигураций из частей прямой, окружности на нелинованной и клетчатой бумаге. Использование свойств сторон и углов прямоугольника, квадрата. Площадь прямоугольника и многоугольников, составленных из прямоугольников, в том числе фигур, изображённых на клетчатой бумаге. Единицы измерения площади. Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб, многогранники. Изображение простейших многогранников. Развёртки куба и параллелепипеда. Создание моделей многогранников (из бумаги, проволоки, пластилина и др.). Объём прямоугольного параллелепипеда, куба. Единицы измерения объёма.

ПЛАНИРУЕМЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ 

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения программы учебного предмета «Математика» характеризуются:

Патриотическое воспитание:

проявлением интереса к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках и прикладных сферах.

Гражданское и духовно-нравственное воспитание:

готовностью к выполнению обязанностей гражданина и реализации его прав, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и пр.);

готовностью к обсуждению этических проблем, связанных с практическим применением достижений науки, осознанием важности морально-этических принципов в деятельности учёного.

Трудовое воспитание:

установкой на активное участие в решении практических задач математической направленности, осознанием важности математического образования на протяжении всей жизни для успешной профессиональной деятельности и развитием необходимых умений; осознанным выбором и построением индивидуальной траектории образования и жизненных планов с учётом личных интересов и общественных потребностей.

Эстетическое воспитание:

способностью к эмоциональному и эстетическому восприятию математических объектов, задач, решений, рассуждений; умению видеть математические закономерности в искусстве.

Ценности научного познания:

ориентацией в деятельности на современную систему научных представлений об основных закономерностях развития человека, природы и общества, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации; овладением языком математики и математической культурой как средством познания мира; овладением простейшими навыками исследовательской деятельности.

Физическое воспитание, формирование культуры здоровья и эмоционального благополучия:

готовностью применять математические знания в интересах своего здоровья, ведения здорового образа жизни (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность); сформированностью навыка рефлексии, признанием своего права на ошибку и такого же права другого человека.

Экологическое воспитание:

ориентацией на применение математических знаний для решения задач в области сохранности окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды; осознанием глобального характера экологических проблем и путей их решения.

Личностные результаты, обеспечивающие адаптацию обучающегося к изменяющимся условиям социальной и природной среды:

готовностью к действиям в условиях неопределённости, повышению уровня своей компетентности через практическую деятельность, в том числе умение учиться у других людей, приобретать в совместной деятельности новые знания, навыки и компетенции из опыта других;

необходимостью в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы об объектах и явлениях, в том числе ранее неизвестных, осознавать дефициты собственных знаний и компетентностей, планировать своё развитие;

способностью осознавать стрессовую ситуацию, воспринимать стрессовую ситуацию как вызов, требующий контрмер, корректировать принимаемые решения и действия, формулировать и оценивать риски и последствия, формировать опыт.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения программы учебного предмета «Математика» характеризуются овладением универсальными познавательными действиями, универсальными коммуникативными действиями и универсальными регулятивными действиями.

1) Универсальные познавательные действия обеспечивают формирование базовых когнитивных процессов обучающихся (освоение методов познания окружающего мира; применение логических, исследовательских операций, умений работать с информацией).

Базовые логические действия:

  • выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями; 

  • формулировать определения понятий; устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа; 

  • воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие; 

  • условные; выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях; 

  • предлагать критерии для выявления закономерностей и противоречий; 

  • делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии; 

  • разбирать доказательства математических утверждений (прямые и от противного), проводить самостоятельно несложные доказательства математических фактов, выстраивать аргументацию, приводить примеры и контрпримеры; 

  • обосновывать собственные рассуждения; выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

  • использовать вопросы как исследовательский инструмент познания; 

  • формулировать вопросы, фиксирующие противоречие, проблему, самостоятельно устанавливать искомое и данное, формировать гипотезу, 

  • аргументировать свою позицию, мнение;

  • проводить по самостоятельно составленному плану несложный эксперимент, небольшое исследование по установлению особенностей математического объекта, зависимостей объектов между собой; 

  • самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений; прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.

Работа с информацией:

  • выявлять недостаточность и избыточность информации, данных, необходимых для решения задачи; 

  • выбирать, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления; 

  • выбирать форму представления информации и иллюстрировать решаемые задачи схемами, диаграммами, иной графикой и их комбинациями; 

  • оценивать надёжность информации по критериям, предложенным учителем или сформулированным самостоятельно.

2)  Универсальные коммуникативные действия обеспечивают сформированность социальных навыков обучающихся.

Общение:

  • воспринимать и формулировать суждения в соответствии с условиями и целями общения; 

  • ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат; в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения; 

  • сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; 

  • в корректной форме формулировать разногласия, свои возражения; 

  • представлять результаты решения задачи, эксперимента, исследования, проекта; 

  • самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории.

Сотрудничество:

  • понимать и использовать преимущества командной и индивидуальной работы при решении учебных математических задач; 

  • принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы; 

  • обобщать мнения нескольких людей; участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые штурмы и др.); 

  • выполнять свою часть работы и координировать свои действия с другими членами команды; 

  • оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.

3)  Универсальные регулятивные действия обеспечивают формирование смысловых установок и жизненных навыков личности.

Самоорганизация:

  • самостоятельно составлять план, алгоритм решения задачи (или его часть), выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.

Самоконтроль:

  • владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи; 

  • предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, найденных ошибок, выявленных трудностей;

  • оценивать соответствие результата деятельности поставленной цели и условиям, объяснять причины достижения или недостижения цели, находить ошибку, давать оценку приобретённому опыту.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Числа и вычисления

Понимать и правильно употреблять термины, связанные с натуральными числами, обыкновенными и десятичными дробями.

Сравнивать и упорядочивать натуральные числа, сравнивать в простейших случаях обыкновенные дроби, десятичные дроби.

Соотносить точку на координатной (числовой) прямой с соответствующим ей числом и изображать натуральные числа точками на координатной (числовой) прямой.

Выполнять арифметические действия с натуральными числами, с обыкновенными дробями в простейших случаях.

Выполнять проверку, прикидку результата вычислений.

Округлять натуральные числа.

Решение текстовых задач

Решать текстовые задачи арифметическим способом и с помощью организованного конечного перебора всех возможных вариантов.

Решать задачи, содержащие зависимости, связывающие величины: скорость, время, расстояние; цена, количество, стоимость.

Использовать краткие записи, схемы, таблицы, обозначения при решении задач.

Пользоваться основными единицами измерения: цены, массы; расстояния, времени, скорости; выражать одни единицы вели- чины через другие.

Извлекать, анализировать, оценивать информацию, представленную в таблице, на столбчатой диаграмме, интерпретировать представленные данные, использовать данные при решении задач.

Наглядная геометрия

Пользоваться геометрическими понятиями: точка, прямая, отрезок, луч, угол, многоугольник, окружность, круг.

Приводить примеры объектов окружающего мира, имеющих форму изученных геометрических фигур.

Использовать терминологию, связанную с углами: вершина сторона; с многоугольниками: угол, вершина, сторона, диагональ; с окружностью: радиус, диаметр, центр.

Изображать изученные геометрические фигуры на нелинованной и клетчатой бумаге с помощью циркуля и линейки.

Находить длины отрезков непосредственным измерением с помощью линейки, строить отрезки заданной длины; строить окружность заданного радиуса.

Использовать свойства сторон и углов прямоугольника, квадрата для их построения, вычисления площади и периметра.

Вычислять периметр и площадь квадрата, прямоугольника, фигур, составленных из прямоугольников, в том числе фигур, изображённых на клетчатой бумаге.

Пользоваться основными метрическими единицами измерения длины, площади; выражать одни единицы величины через другие.

Распознавать параллелепипед, куб, использовать терминологию: вершина, ребро грань, измерения; находить измерения параллелепипеда, куба.

Вычислять объём куба, параллелепипеда по заданным измерениям, пользоваться единицами измерения объёма.

Решать несложные задачи на измерение геометрических величин в практических ситуациях.



п/п


Наименование разделов и тем программы

Количество часов

Дата изучения

Виды деятельности

Виды, формы контроля

Электронные (цифровые) образовательные ресурсы







всего

контрольные работы

практические работы







Раздел 1. Линии







1.1

Разнообразный мир линий

1

0

0

1.09.2022

Распознавать на чертежах, рисунках, описывать, используя терминологию, и изображать с помощью чертёжных инструментов: точку, прямую, отрезок, луч, угол, ломаную, окружность

Устный опрос

https://resh.edu.ru/subject/lesson/7741/start/312461/







1.2

Прямая. Части прямой. Ломаная

2

0

0

2.09.2022, 5.09.2022

Распознавать на чертежах, рисунках, описывать, используя терминологию, и изображать с помощью чертёжных инструментов: точку, прямую, отрезок, луч, угол, ломаную, окружность

Устный опрос

https://resh.edu.ru/subject/lesson/7741/start/312461/







1.3.

Длина линии.

2

0

1

6.09.2022, 7.09.2022

Использовать линейку и транспортир как инструменты для построения и измерения: измерять длину от резка, величину угла.

Практическая работа

https://resh.edu.ru/subject/lesson/7740/start/234851/







1.4.

Окружность.

2

0

1

8.09.2022, 9.09.2022

Использовать линейку и транспортир как инструменты для построения и измерения: измерять длину от резка, величину угла; строить отрезок

заданной длины, угол, заданной

величины;

циркулем равные отрезки, строить окружность заданного радиуса;



Устный опрос, практическая работа

https://resh.edu.ru/subject/lesson/7736/start/312523/










Итого по разделу:

7

























Раздел 2. Натуральные числа







2.1

Как записывают и читают натуральные числа

2

0

0




Читать, записывать, сравнивать натуральные числа; предлагать и обсуждать способы упорядочивания чисел;


Устный опрос


https://resh.edu.ru/subject/lesson/7721/start/287636/







2.2

Натуральный ряд. Сравнение натуральных чисел

2

0

1




Читать, записывать, сравнивать натуральные числа; предлагать и обсуждать способы упорядочивания чисел;

Устный опрос,

практическая работа

https://resh.edu.ru/subject/lesson/7719/start/316201/







2.3

Числа и точки на прямой

2

0

1




Изображать координатную прямую, отмечать числа точками на координатной прямой, находить координаты точки;

Устный опрос,

практическая работа

https://resh.edu.ru/subject/lesson/7719/start/316201/







2.4

Округление натуральных чисел

2

0

0




Выполнять арифметические действия с натуральными числами, вычислять значения числовых выражений со скобками и без скобок;

Письменный опрос

https://resh.edu.ru/subject/lesson/7718/start/316232/







2.5

Решение комбинаторных задач


4

0

1




Решать простейшие комбинаторные задачи

Устный опрос

https://resh.edu.ru/subject/lesson/18/







2.6

Контрольная работа№1

1

0

0




Читать, записывать, сравнивать натуральные числа; предлагать и обсуждать способы упорядочивания чисел; изображать координатную прямую, отмечать числа точками на координатной прямой, находить координаты точки, Выполнять арифметические действия с натуральными числами, вычислять значения числовых выражений со скобками и без скобок; решать простейшие комбинаторные задачи

Контрольная работа













Итого по разделу:

13

























Раздел 3. Действия с натуральными числами







3.1

Сложение и вычитание

4

0

0




Выполнять арифметические действия с натуральными числами, вычислять значения числовых выражений со скобками и без скобок

Письменный опрос

https://resh.edu.ru/subject/lesson/7723/start/272294/

https://resh.edu.ru/subject/lesson/7717/start/235285/








3.2

Умножение и деление

5

0

0




Выполнять арифметические действия с натуральными числами, вычислять значения числовых выражений со скобками и без скобок

Письменный опрос, устный опрос

https://resh.edu.ru/subject/lesson/7722/start/287667/







3.3

Порядок действий в вычислениях

5

0

0




Выполнять арифметические действия с натуральными числами, вычислять значения числовых выражений со скобками

и без скобок

Письменный опрос, устный опрос

https://resh.edu.ru/subject/lesson/7724/start/311531/








3.4

Степень числа

3

0

0




Записывать произведение в виде степени, читать степени, использовать терминологию (основание, показатель), вычислять значения степеней;

Письменный опрос, устный опрос

https://resh.edu.ru/subject/lesson/7713/start/272325/







3.4

Решение задач на движение

5

0

0




Решать текстовые задачи арифметическим способом, использовать зависимости между величинами (скорость, время, расстояние; цена, количество, стоимость и др.): анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимые данные, устанавливать зависимости между величинами, строить логическую цепочку рассуждений;

Письменный опрос, устный опрос

https://resh.edu.ru/subject/lesson/7711/start/311996/







3.5

Контрольная работа №2

1

0

0




Выполнять арифметические действия с натуральными числами, вычислять значения числовых выражений со скобками и без скобок; записывать произведение в виде степени, читать степени, использовать терминологию (основание, показатель), вычислять значения степеней; решать текстовые задачи арифметическим способом, использовать зависимости между величинами (скорость, время, расстояние; цена, количество, стоимость и др.): анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимые данные, устанавливать зависимости между величинами, строить логическую цепочку рассуждений;

Контрольная работа













Итого по разделу:

23






































































































































































ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ


написать администратору сайта