Главная страница
Навигация по странице:

  • 2 Места обитания бактерий

  • 7 Действие внешних факторов

  • 8 Самые распространенные бактериальные болезни

  • Ведомость оценки результатов выполнения и защиты индивидуального проекта

  • Удивительный мир бактерий


    Скачать 116.78 Kb.
    НазваниеУдивительный мир бактерий
    Дата14.02.2023
    Размер116.78 Kb.
    Формат файлаdocx
    Имя файлаPronina_A_A_1k-lab.docx
    ТипРеферат
    #937346

    Государственное автономное профессиональное

    образовательное учреждение

    «Липецкий медицинский колледж»



    ИНДИВИДУАЛЬНЫЙ ПРОЕКТ

    Специальность 31.02.03 Лабораторная диагностика

    По учебной дисциплине биология

    Тема «Удивительный мир бактерий»

    Выполнила: Пронина А.А.

    Студентка группы 1к-лаб

    Руководитель: Черкасов Д.В.

    2017-2018 учебный год

    Содержание


    Введение 3

    1 История открытия 4

    2 Места обитания бактерий 6

    3 Морфология 7

    4 Строение бактерий 9

    5 Питание 18

    6 Дыхание 20

    7 Действие внешних факторов 22

    8 Самые распространенные бактериальные болезни 23

    Дизентерия 23

    Столбняк 24

    Туберкулёз  24

    Холера 25

    Чума  26

    Заключение 28

    Список литературы 29

    1.Большая Медицинская Энциклопедия Б. В. Петровский 2016 г. 29

    Преподаватель _______________________ /______________/ 30

    Председатель ЦМК ________________________ /_____________/ 30

    Заместитель директора по УР ______________________/_____________/ 30


    Введение


    Моя работа про бактерию считается актуальной, поскольку мир бактерий - часть нашей жизни.

    По статистике, именно инфекционные заболевания становятся причиной 26% всех смертей на планете (по данным Всемирной Организации Здравоохранения (ВОЗ).

    В мире регистрируются тысячи, сотни тысяч и даже миллионы случаев инфекционных заболеваний, которые поражают детей и взрослых не только в слаборазвитых или развивающихся странах, но и в странах с высоким уровнем жизни. Так, дифтерией заболевают 4880 человек в мире. Корь поражает 354820 человек, из них умерло – 139 300 (при охвате прививками 84%).

    Целью данной работы является изучение разновидности, жизнедеятельности бактерий, и их роль в окружающей среде.

    Задачи индивидуального проекта:

    1. изучить классификацию бактерий;

    2. изучить среды обитания бактерий;

    3. изучить разновидность бактерий;

    4. изучить бактериальные болезни.


    1 История открытия


    Впервые бактерии наблюдал Антон Левенгук в 1674 году, используя микроскоп, сконструированный им самым. Название «бактерия» появилась позднее, она была предложена Кристианом Эрнбергом в 1828, выведенное с греческого слова, которое означало «маленькая палочка».

    Луи Пастер продемонстрировал в 1859 году, что процесс брожения вызывается ростом микроорганизмов, и что этот рост не может быть зарожденным непроизвольно. Вместе с его современником, Робертом Кохом, Пастер был одним из авторов и первых защитников бактериальной теории возникновения болезней. Роберт Кох был пионером медицинской микробиологии, работая с такими болезнями, как холера, сибирская язва и туберкулез. В своем исследовании туберкулеза Кох окончательно довел бактериологическую теорию, за что и был награжденный Нобелевской премией 1905 года. В своих «Постулатах Коха» он установил критерии проверки, или болезнь вызывается микроорганизмом; эти постулаты все еще используются сегодня.

    Хотя в 19 столетии уже было известно, что бактерии — причина многих болезней, не существовало никаких эффективных средств антибактериального лечения. В 1910 году Рафаэль Эрлих создал первый антибиотик, модифицировав фарбник, который выборочно красил бактерию Treponema pallidum — спирохету, которая вызывает сифилис — в вещество, которое выборочно убивает патоген. Эрлих был также награжденный Нобелевской премией за свою работу по иммунологии и открытию использования красок для выявления и идентификации бактерий, его работа стала основой для создания крашения за Граммом и крашение за Зелий-Нельсеном. В конце 19 — в начале 20 столетие благодаря работам Мартинуса Бейеринка и Сергея Николаевича Виноградского были заложены основы общей и экологической микробиологии.

    Важный шаг вперед в изучении бактерий был сделан в 1977 году Карлом Воузом, который установил, что археи — отдельная от бактерий линия эволюционного развития. Эта новая филогенетическая таксономия была основана на установлении последовательности 16S рибосомной РНК и поделила прокариоты на два отдельных домена, как часть системы трех доменов.

    Бактерии (от греческого палочка) — разнообразная по биологическим, свойствам группа широко распространенных на Земле микроскопических, в основном одноклеточных, организмов, принадлежащих к низшим формам жизни.

    2 Места обитания бактерий


    Бактерии обитают в почве, воде, организме человека и животных. Разнообразные группы бактерий могут развиваться в условиях, не доступных, для других организмов. Качественный и количественный состав бактерий, обитающих во внешней среде, зависит от многих условий: pH среды, температуры, наличие питательных веществ, влажности, аэрации, присутствия других микроорганизмов. Чем больше в среде содержится разнообразных органических соединений, тем большее количество бактерий можно в ней обнаружить. В незагрязненных почвах и водах встречается сравнительно небольшое количество сапрофитных форм бактерий, микробактерии, кокковые формы. В воде встречаются различные спорообразующие и неспорообразующие бактерии и специфические водные бактерии – водные виброны, нитчатые бактерии и др. В иле, на дне водоемов, обитают различные анаэробные бактерии. Среди бактерий, обитающих в воде и почве, имеются азотфиксирующие, нитрифицирующие, денитрифицирующие целлюлозу бактерии и др. В морях и океанах обитают бактерии, растущие при высоких концентрациях солей и повышенном давлении, встречаются светящиеся виды. В загрязненных водах и почве, кроме почвенных и водных сапрофитов, в большом количестве встречаются бактерии, обитающие в организме человека и животных – энтеробактерии, клостридии и др.

    Показателем фекального загрязнения обычно является наличие кишечной палочки. В связи с широким распространением бактерий и своеобразием метаболической активности многих их видов они имеют исключительно большое значение в круговороте веществ в природе (в круговороте азота участвуют многие виды бактерий – от видов расщепляющих белковые продукты растительного и животного происхождения, до видов образующих нитраты, которые устанавливаются высшими растениями).

    3 Морфология


    Существует три основные формы бактерий — шаровидная, палочковидная и спиралевидная; большая группа нитчатых бактерий объединяет преимущественно водные бактерии и не содержит патогенных видов.

    Шаровидные бактерии — кокки, подразделяются в зависимости от расположения клеток после деления на несколько групп:

    1) диплококки (делятся в одной плоскости и располагаются парами);

    2) стрептококки (делятся в одной плоскости, но при делении не отделяются друг от друга и образуют цепочки);

    3) тетракокки (делятся в двух взаимно перпендикулярных плоскостях, образуя группы по четыре особи);

    4) сарцины (делятся в трех взаимно перпендикулярных плоскостях, образуя группы кубической формы);

    5) стафилококки (делятся в нескольких плоскостях без определенной системы, образуя скопления, напоминающие виноградные грозди). Средний размер кокков 0,5—1 мкм.

    Палочковидные бактерии имеют строго цилиндрическую или овоидную форму, концы палочек могут быть ровными, закругленными, заостренными. Палочки могут располагаться попарно в виде цепочек, но большинство видов располагается без определенной системы. Длина палочек варьирует от 1 до 8 мкм, средний диаметр 0,5—2 мкм. Принято собственно бактериями называть палочки, не образующие спор. Бактерии, образующие споры, называются бациллами. По принятой номенклатуре к бациллам относят аэробные формы. Анаэробных спорообразующих бактерий относят к клостридиям. Спорообразование у бацилл и клостридий не связано с процессом размножения. Споры у них относятся к типу эндоспор, представляющих собой круглые или овальные тела, преломляющие свет и окрашивающиеся по специальным методам. Расположение спор в клетке, их величина и форма характерны для каждого вида бактерий. Некоторые палочки (микобактерии, коринебактерии) образуют нитевидные особи, другие (клубеньковые бактерии) образуют разветвленные, звездчатые формы — так называемые бактероиды.

    Спиралевидные формы бактерий подразделяют на вибрионы и спириллы. Изогнутость тел вибрионов не превышает одной четверти оборота спирали. Спириллы образуют изгибы из одного или нескольких оборотов.

    4 Строение бактерий


    Капсула имеется у ряда бактерий и является их внешним структурным компонентом. У ряда бактерий аналогично капсуле имеется образование в виде тонкого слизистого слоя на поверхности клетки. У некоторых бактерий капсула формируется в зависимости от условий их существования. Одни бактерии образуют капсулы только в макроорганизме, другие — как в организме, так и вне его, в частности на питательных средах, содержащих повышенные концентрации углеводов. Некоторые бактерии образуют капсулы независимо от условий существования. В состав капсулы большинства бактерий входят полимеризованные полисахариды, состоящие из пентоз и аминосахаров, уроновые кислоты, полипептиды и белки. Капсула не является аморфным образованием, а определенным образом структурирована. У некоторых бактерий, например, пневмококков, капсула определяет их вирулентность, а также некоторые антигенные свойства бактериальной клетки.

    Клеточная стенка бактерий определяет их форму и обеспечивает сохранение внутреннего содержимого клетки. По особенностям химического состава и структуры клеточной стенки бактерии дифференцируют с помощью окрашивания по Граму.

    Строение клеточной стенки различно у грамположительных и грамотрицательных бактерий. Основным слоем клеточной стенки, характерным для всех видов бактерий, является ригидный слой (синоним: мукопептидный слой, муреин, пептидогликан; последнее название наиболее соответствует химическому строению слоя), в состав которого вводят повторяющиеся остатки аминосахаров — N-ацетилглюкозамина и N-ацетилмурамовой кислоты, образующих основу линейного полимера — муреина.

    В состав клеточных стенок грамотрицательных бактерий, кроме ригидного слоя, входят липопротеиновый и липополисахаридный слои. Липополисахаридный слой (Л ПС) наиболее изучен у энтеробактерий, и особенно сальмонелл. Л ПС представляет собой комплекс фосфорилирование гетерополисахаридов, ковалентно связанных с содержащим глюкозамин липидом (липид А). В состав Л ПС входит О-антиген клетки (у энтеробактерий). Полисахаридная часть Л ПС состоит из основной (базисной) структуры и О-антигенной части. В состав базисной части, присущей всем энтеробактериям, входят гептоза, 2-кето-З-дезоксиоктонат (КДО), глюкоза, галактоза и N-ацетил-глюкозамин. Через КДО базисная часть присоединена к компоненту, состоящему из липида А, этанол амина, фосфата и КДО. С другой стороны (наружной) к базисной структуре присоединены боковые цепи, образованные повторяющимися олигосахаридными единицами. Наружные полисахаридные цепи видоспецифичны и являются соматическими О-антигенами. О-специфичность определяется углеводным составом всей боковой цепи, последовательностью расположения в ней углеводов и концевым сахаром, 6-дезокси- или 3,6-дидезоксигексозой. Наследственные нарушения в биосинтезе ЛПС энтеробактерий базисной части или O-боковых цепей приводят к появлению R-форм мутантов.

    Липопротеиновый слой (ЛП) у грамотрицательных бактерий, по представлению Вейделя , является наружным слоем клеточной стенки. ЛПС занимает промежуточное положение, наиболее глубоко расположенным является ригидный слой. Эта схема не объясняет обнаружение О-антигена без предварительного разрушения Л П. Поэтому были предложены другие схемы строения стенки, согласно которым ЛП покрывает бактериальную клетку не сплошным слоем, а через него проходит ЛПС в виде «отростков», как это показано на рис. 6. Это представление подтверждено иммунохимическими методами с использованием ферритина при изучении локализации О-антигена.

    У некоторых грамположительных бактерий клеточная стенка, так же, как и у грамотрицательных, состоит не только из ригидного слоя, но имеет многослойное строение. Например, у стрептококков в ее состав входит белковый слой, промежуточный липополисахаридный и внутренний ригидный слой. Клеточная стенка не является инертной структурой в ферментативном отношении. В ее составе обнаружены аутолитические ферменты, фосфатаза, аденозинтрифосфатаза.

    Цитоплазматическая мембрана бактерий прилегает к внутренней поверхности клеточной стенки, отделяет ее от цитоплазмы и является очень важным в функциональном отношении компонентом клетки. В мембране локализованы окислительно-восстановительные ферменты, с системой мембран связаны такие важнейшие функции клетки, как деление, биосинтез ряда компонентов, хемо- и фотосинтез и др. Толщина мембраны у большинства бактерий составляет 7—10 нм. Электронномикроскопическим методом обнаружено, что она состоит из трех слоев: двух электронно-плотных и промежуточного — электронно-прозрачного. В состав мембраны входят белки, фосфолипиды, липопротеины, небольшое количество углеводов и некоторых других соединений. Многие белки мембраны Б. являются ферментами, участвующими в процессах дыхания, а также в биосинтезе компонентов клеточной стенки и капсулы. В составе мембраны определяются также пермеазы, обеспечивающие перенос в клетку растворимых веществ. Мембрана служит осмотическим барьером, она обладает избирательной полупроницаемостью и ответственна за поступление внутрь клетки питательных веществ и выход из нее продуктов обмена.

    Помимо цитоплазматической мембраны, в клетке бактерии имеется система внутренних мембран, получивших название мезосом, которые, вероятно, являются производными цитоплазматической мембраны; их строение варьирует у разных видов бактерий. Наиболее развиты мезосомы у грамположительных бактерий. Строение мезосом неоднотипно, их полиморфизм отмечается даже у одного и того же вида бактерий. Внутренние мембранные структуры могут быть представлены простыми инвагинациями цитоплазматической мембраны, образованиями в виде пузырьков или петель (чаще у грамотрицательных бактерий), в виде вакуолярных, ламмелярных, тубулярных образований. Мезосомы чаще всего локализованы у клеточной перегородки, отмечается также их связь с нуклеоидом. Поскольку в мезосомах обнаружены ферменты дыхания и окислительного фосфорилирования, многие авторы считают их аналогами митохондрий клеток высших. Предполагается, что мезосомы принимают участие в делении клетки, распределении дочерних хромосом в разделяющиеся клетки и спорообразовании. С мембранным аппаратом клетки связаны также функции фиксации азота, хемо- и фотосинтеза. Следовательно, можно полагать, что мембраны клетки играют определенного рода координирующую роль в пространственной организации ряда ферментных систем и органелл клетки.

    В цитоплазме бактерий могут содержаться внутриклеточные включения в виде гранул гликогена, крахмала, жировых веществ. У ряда бактерий в цитоплазме находятся гранулы волютина, состоящие из неорганических полифосфатов, метафосфатов и соединений, близких к нуклеиновым кислотам. Роль волютина до конца не ясна. Некоторые авторы на основании его исчезновения при голодании клеток рассматривают волютин как запасные питательные вещества. Волютин обладает сродством к основным красителям, проявляет хромофильность и метахромазию, легко выявляется в клетках в виде крупных гранул, особенно при специальных методах окраски.

    Рибосомы бактерии являются местом синтеза белков клетки, в процессе которого образуются структуры, состоящие из большого числа рибосом (до 20), называемые полирибосомами или чаще полисомами. В образовании полисом принимает участие м-РНК. По окончании синтеза данного белка полисомы вновь распадаются на одиночные рибосомы, или субъединицы. Рибосомы могут располагаться свободно в цитоплазме, но значительная их часть связана с мембранами клетки. На ультратонких срезах большинства бактерий рибосомы обнаруживаются в цитоплазме в виде гранул диаметром около 20 нм. Рибосомы E. коли, очищенные в присутствии ионов магния, осаждаются при ультрацентрифугировании со скоростью седиментации 70 S. При более низких концентрациях магния они диссоциируют на две субъединицы с константами седиментации 50 S и 30 S. Полагают, что 50 S частица имеет сферическую, а 30 S — уплощенную форму. При повышении концентрации ионов магния 70 S частицы образуют димеры. В свободном состоянии (вне синтеза белка) рибосомы находятся в диссоциированном состоянии в рибосомной фракции клеток. Диссоциацию рибосом на субъединицы стимулирует специальный фактор диссоциации. 50 S и 30 S субъединицы имеют мол. вес 1,8· 106 и 0,85-106 соответственно. Обе частицы состоят из рибосомальной РНК (или р-РНК) и белка. 50 S частица содержит по одной молекуле 23 S и 5 S р-РНК. 30 S частица содержит одну молекулу 16 S р-РНК. Белковый состав рибосом неоднороден. 30 S частицы состоят из двадцати одного, а 50 S из тридцати—тридцати пяти различных белков. Часть белков 30 S частиц рибосом нужна как для сборки рибосом, так и для их функционирования, другая часть важна только в функциональном отношении. Рибосомальная РНК имеет важное значение для правильной сборки и организации рибосом.

    Степень агрегации рибосом регулируется ионами магния. В рибосомах найдены полиамины и рибонуклеаза I, участвующая, как полагают, в гидролизе м-РНК.

    Ядро. Бактерии обладают дискретной ядерной структурой, в связи со своеобразием строения получившей название нуклеиида. Нуклеоиды Б. содержат основное количество ДНК клетки. Они окрашиваются методом Фейльгена, хорошо видны при окраске по Романовскому — Гимзе (см. Романовского — Гимзы метод), после кислотного гидролиза или в живом состоянии при фазово-контрастной микроскопии, а также на ультратонких срезах в электронном микроскопе. Нуклеоид определяется в виде компактного одиночного или двойного образования. У растущих культур нуклеоиды часто выглядят в виде раздвоенных образований, что отражает их деление. Митотического деления ядерных структур у бактерий не обнаружено. Форма нуклеоидов и их распределение в клетке весьма изменчивы и зависят от ряда причин, в том числе и от возраста культуры. На электронных микрофотографиях в местах расположения нуклеоидов видны светлые участки меньшей оптической плотности. Ядерная вакуоль не отделена от цитоплазмы ядерной оболочкой. Форма вакуоли не постоянна. Ядерные участки заполнены пучками тонких нитей, образующих сложное переплетение.

    В составе ядерных структур бактерий не обнаружены гистоны ; предполагают, что их роль у бактерий выполняют полиамины. Ядра бактерий не похожи на ядра других организмов. Это послужило основой для выделения бактерий в группу прокариотов, в отличие от эукариотов, обладающих ядром, содержащим хромосомы, оболочку и делящимся путем митоза. Нуклеоид бактерии соединен с мезосомой. Характер связи пока не известен. Хромосома бактерий имеет циркулярно замкнутую структуру. Это было показано методом радиоавтографии у E. coli, предварительно меченных 3Н-тимидином. О структуре ДНК судили по распределению зерен меченого тимидина. Подсчитано, что длина замкнутой в кольцо ДНК клетки составляет 1100—1400 мкм, а молекулярный вес 2,8· 109 [Кернс (J, 1963].

    Жгутики и ворсинки. На поверхности некоторых бактерий имеются органеллы движения — жгутики . Их можно обнаружить с помощью особых методов окраски, микроскопирования в темном поле или в электронном микроскопе. Жгутики имеют спиралевидную форму, причем шаг спирали специфичен для каждого вида бактерий. На основании количества жгутиков и их расположения на поверхности клетки различают следующие группы подвижных микробов: монотрихи, амфитрихи, лофотрихи и перитрихи. Монотрихи имеют один жгутик, расположенный на одном из полюсов клетки и реже субполярно или латерально. У амфитрихов на каждом полюсе клетки расположено по одному жгутику. Лофотрихи имеют пучок жгутиков на одном или двух полюсах клетки. У перитрихов жгутики распределены без определенного порядка по всему телу клетки.

    М. А. Пешков (1966) предлагает несколько другую терминологию. Амфи- и лофотрихи он объединяет термином «мультрихи» и выделяет смешанный тип, имеющий два или более жгутиков разного вида в разных точках прикрепления. Основание жгутиков (блефаропласт) расположено в цитоплазматической мембране. Жгутики почти целиком состоят из белка — флагеллина.

    На поверхности некоторых бактерий (энтеробактерии), кроме жгутиков, имеются ворсинки (фимбрии, пили), видимые только под электронным микроскопом (рис. 12). Различают несколько морфологических типов ворсинок. Наиболее полно изучен первый тип (общий) и ворсинки, существующие только при наличии в клетке половых факторов. Ворсинки общего типа покрывают всю поверхность клетки, состоят из белка; половых ворсинок приходится 1—4 на клетку. И те и другие обладают антигенной активностью.

    По химическому составу бактерии не отличаются от других организмов.

    В состав бактерий входят углерод, азот, водород, кислород, фосфор, сера, кальций, калий, магний, натрий, хлор и железо. Их содержание зависит от вида бактерии и условий культивирования. Обязательным химическим компонентом клеток бактерий, как и других организмов, является вода, представляющая собой универсальную дисперсионную среду живой материи. Основная часть воды находится в свободном состоянии; ее содержание различно у разных бактерий и составляет 70—85% влажного веса бактерий. Кроме свободной, имеется ионная фракция воды и вода, связанная с коллоидными веществами. По составу органических компонентов клетки бактерий сходны с клетками других организмов, отличаясь, однако, наличием некоторых соединений. В состав бактерий входят белки, нуклеиновые кислоты, жиры, моно-, ди- и полисахариды, аминосахара и др. У бактерий имеются необычные аминокислоты: диаминопимелиновая (содержащаяся еще у сине-зеленых водорослей и риккетсий); N-метиллизин, входящий в состав флагеллина некоторых бактерий; D-изомеры некоторых аминокислот. Содержание нуклеиновых кислот зависит от условий культивирования, фаз роста, физиологического и функционального состояния клеток. Содержание ДНК в клетке более постоянно, нежели РНК. Нуклеотидный состав ДНК неизменен в процессе развития бактерий, видоспецифичен и используется как один из важнейших таксономических признаков. Бактериальные липиды разнообразны. Среди них встречаются жирные кислоты, фосфолипиды, воски, стероиды. Некоторые бактерии образуют пигменты с интенсивностью, которая широко варьирует у одного и того же вида и зависит от условий выращивания. Твердые питательные среды более благоприятны для образования пигментов. По химическому строению различают каратиноидные, хиноновые, меланиновые и другие пигменты, которые могут быть красного, оранжевого, желтого, коричневого, черного, синего или зеленого цвета. Чаще пигменты нерастворимы в питательных средах и окрашивают только клетки. Пигменты, растворимые в воде (пиоцианин), диффундируют в среду, окрашивая ее. К пигментам бактерий относится также бактериохлорофилл, придающий фиолетовую или зеленую окраску некоторым фотосинтезирующим бактериям.

    Ферменты бактерий делятся на функционирующие только внутри клетки (эндоферменты) и только вне клетки (экзоферменты). Эндоферменты в основном катализируют синтетические процессы, дыхание и т. п. Экзоферменты катализируют главным образом гидролиз высокомолекулярных субстратов до соединения с более низким молекулярным весом, способных проникать внутрь клетки.

    В клетке ферменты связаны с соответствующими структурами и органеллами. Например, аутолитические ферменты связаны с клеточной стенкой, окислительно-восстановительные ферменты — с цитоплазматической мембраной, ферменты, связанные с репликацией ДНК,— с мембраной или нуклеоидом.

    Активность ферментов зависит от ряда условий, в первую очередь от температуры выращивания бактерий и pH среды. Понижение температуры обратимо снижает, а повышение до определенных пределов (40—42°) повышает активность ферментов. У термофильных и психрофильных бактерий оптимум активности ферментов совпадает с оптимальной температурой роста. Оптимальная температура для мезофильных бактерий, к которым принадлежат патогенные бактерии, примерно равна 37°. Оптимум pH в основном лежит в пределах 4—7. Встречаются вариации оптимума pH. Ферменты бактерий, активность которых не зависит от присутствия субстрата в среде культивирования, называют конститутивными. Ферменты, синтез которых зависит от наличия субстрата в среде, называются индуцируемыми (старое название — адаптивные). Например, образование β-галактозидазы у кишечной палочки начинается только при добавлении в среду лактозы, которая индуцирует синтез этого фермента.

    Контроль синтеза ферментов осуществляется путем ингибирования конечным продуктом или путем индукции и репрессии.

    Ферментативная активность бактерий используется для их идентификации, чаще всего при этом изучаются сахаролитические и протеолитические свойства. Некоторые ферменты, образуемые патогенными бактериями, являются факторами вирулентности.

    5 Питание


    Бактерии используют питательные вещества только в виде относительно небольших молекул, проникающих внутрь клетки. Такой способ питания, характерный для всех организмов растительного происхождения, называют голофитным. Сложные органические вещества (белок, полисахариды, клетчатка и др.) могут служить источником питания и энергии только после их предварительного гидролиза до более простых соединений, растворимых в воде либо в липоидах. Способность различных соединений проникать в цитоплазму клеток зависит от проницаемости цитоплазматической мембраны и химические структуры питательного вещества.

    Вещества, которые служат источником питания бактерий, поразительно разнообразны. Важнейшим элементом, необходимым для живых организмов, является углерод. Одни виды бактерий (аутотрофы) могут использовать неорганический углерод из углекислоты и ее солей, другие (гетеротрофы) — только из органических соединений. Подавляющее большинство бактерий относится к гетеротрофам. Для усвоения углерода требуется посторонний источник энергии. Немногочисленные виды бактерий, обладающие фотосинтетическими пигментами, используют энергию солнечного света. Эти бактерии называются фотосинтезирующими. Среди них имеются аутотрофы (зеленые и пурпурные серобактерии) и гетеротрофы (несерные пурпурные бактерии). Их называют также соответственно фотолитотрофами и фотоорганотрофами. Большинство же бактерий использует энергию химических реакций и называется хемосинтезирующими. Хемосинтезирующие аутотрофы называются хемолитотрофами, а гетеротрофы — хемоорганотрофами.

    Гетеротрофные бактерии усваивают углерод из органических соединений различной химической природы. Легко усваиваются вещества, содержащие ненасыщенные связи или атомы углерода с частично окисленными валентностями. В связи с этим наиболее доступными источниками углерода являются сахара, многоатомные спирты и др. Некоторые гетеротрофы наряду с усвоением органического углерода могут усваивать и неорганический углерод.

    Отношение к источникам азота также различно. Существуют бактерии, усваивающие минеральный и даже атмосферный азот. Другие бактерии неспособны синтезировать белковую молекулу или некоторые аминокислоты из простейших соединений азота. В этой группе имеются формы, использующие азот из отдельных аминокислот, из пептонов, сложных белковых веществ и из минеральных источников азота с добавлением несинтезируемых ими аминокислот. К этой группе принадлежат многие патогенные бактерии.

    Кроме источников азота и углерода, бактерии нуждаются в фосфоре, сере, калии, магнии, железе, микроэлементах, а также в дополнительных факторах роста.

    6 Дыхание


    Часть веществ, проникающих внутрь бактериальной клетки, окисляясь, снабжает ее необходимой энергией. Этот процесс называют биол, окислением или дыханием.

    Биологическое окисление сводится в основном к двум процессам: дегидрированию субстрата с последующим переносом электронов к конечному акцептору и накоплению в биологически доступной форме высвобождающейся энергии. Конечным акцептором электронов могут служить кислород, некоторые органические и неорганические соединения. При аэробном дыхании конечным акцептором электронов является кислород. Энергетические процессы, в которых конечным акцептором электронов является не кислород, а другие соединения, называются анаэробным дыханием, причем к собственно анаэробному дыханию некоторые исследователи относят те процессы, когда конечным акцептором электронов являются неорганические соединения (нитраты и сульфаты).

    Под брожением понимают такие энергетические процессы, в которых органические соединения выступают одновременно как доноры и как акцепторы электронов.

    Среди бактерий имеются строгие аэробы, развивающиеся только в присутствии кислорода, облигатные анаэробы, развивающиеся только в отсутствие кислорода, и факультативные анаэробы , способные к развитию и в аэробных и в анаэробных условиях. Большинство бактерий обладает пространственно организованной системой дыхательных ферментов, получившей название дыхательной цепи или цепи переноса электронов.

    Дыхание у бактерий, подобно дыханию других организмов, сопряжено с процессами окислительного фосфорилирования, сопровождается образованием соединений, богатых макроэргическими связями (АТФ). Энергия, накапливающаяся в этих соединениях, используется по мере необходимости.

    В качестве источника энергии бактерии могут использовать разнообразные органические соединения (углеводы, азотсодержащие вещества, жиры и жирные кислоты, органические кислоты и др.). Способность получать энергию в результате окисления неорганических соединений присуща лишь небольшой группе бактерий. Неорганические вещества, окисляемые ими, специфичны для каждого вида бактерий. К этим бактериям относятся нитрифицирующие бактерии, серобактерии, железобактерии и др. Среди них имеются и аэробы и анаэробы.

    Фотосинтезирующие бактерии превращают энергию видимого света непосредственно в АТФ; этот процесс, осуществляемый в ходе фотосинтеза, называют фотофосфорилированием.

    7 Действие внешних факторов


    Жизнеспособность бактерий при действии внешних факторов изучают разными методами путем подсчета выживших клеток. Для этого строят кривые выживаемости, выражающие зависимость числа выживших клеток от времени воздействия.

    Бактерии относительно устойчивы к низким температурам. Бактерии более чувствительны к действию высоких температур. Обычно при прогревании бактерий при t° 60—70° происходит гибель вегетативных клеток, споры при этом не погибают. Чувствительность бактерий к высоким температурам используется при стерилизации .

    Разные виды бактерий относятся по-разному к высушиванию. Одни бактерии (например, гонококки) очень быстро погибают, другие (микобактерии) весьма устойчивы. Однако соблюдая определенные условия (наличие вакуума, специальных сред), можно получить высушенные лиофилизированные.

    Бактерии можно разрушить путем механического растирания с различными порошками (стеклянный, кварцевый), а также воздействием ультразвука.

    Бактерии чувствительны к ультрафиолетовым лучам; наиболее эффективны лучи с длиной волны около 260 нм, что соответствует максимуму поглощения их нуклеиновыми кислотами. Ультрафиолетовые лучи обладают мутагенным действием. Рентгеновские лучи также обладают летальным и мутагенным действием.

    Чувствительность к химиотерапевтическим препаратам и антибиотикам зависит от вида бактерий и механизма действия препарата на клетку. Из чувствительных бактерий могут быть получены устойчивые формы в результате мутации или при передаче факторов множественной лекарственной устойчивости микроорганизмов.

    8 Самые распространенные бактериальные болезни


    Количество бактериальных заболеваний человека огромно. На сегодняшний день болезни, вызываемые бактериями, являются самыми опасными, так как они способны не только усугубить качество жизни человека, но и привести к смертельному исходу. Поэтому нам необходимо знать не только возбудителей и симптомы бактериальных болезней человека, но и возможные причины этих заболеваний и возможные меры борьбы с ними. К бактериальным заболеваниям относятся: чума, холера, сибирская язва, туберкулёз, ботулизм, столбняк, ангина, менингит, дифтерия, дизентерия, коклюш, скарлатина, гастрит, язва желудка и т.д.

    Дизентерия



    Дизентерия- это инфекционная болезнь, которую вызывает бактерия дизентерийная палочка.

    Заражение происходит при попадании в организм возбудителя через рот с пищей, водой или через грязные руки. Переносчиками дизентерийной палочки могут быть мухи. Болеют дизентерией только люди. Источником инфекции может быть больной человек. Инфекция способна распространяться очень быстро.

    Дизентерия - болезнь, характеризующаяся учащением стула, примесью слизи и крови в кале, схваткообразными болями в животе, повышением температуры тела до 39 градусов и более. Частота стула может доходить до 15-25 раз в сутки и более. Особенно тяжело заболевание протекает у детей. организм ребёнка обезвоживается быстрее, чем у взрослых. Раньше, когда не было антибиотиков от дизентерии люди умирали.

    Лечение дизентерии направлено на уничтожение возбудителя и проводится оно в стационаре инфекционного профиля.

    Меры профилактики: регулярное и тщательное мытьё рук после туалета, прогулок и перед приёмом пищи, сырых овощей и фруктов, избавляться от мух в помещении, не допускать их контакта с продуктами. Ведь не зря дизентерию называют "болезнью грязных рук". В настоящее время можно делать профилактическую прививку от дизентерии.

    Столбняк


    Столбнячная палочка- микроскопическая бактерия, которая обитает в желудочно-кишечном тракте травоядных животных. Столбняк является острым инфекционным заболеванием человека, в результате которого поражается нервная система, нарушается иннервация скелетных мышц. Вместе с фекальными массами больных животных выделяется огромное количество спор возбудителя. Споры очень стойки к воздействию факторов внешней среды, они могут годами сохранять способность к жизнедеятельности, находясь в почве в состоянии споры.

    Заболевание начинается остро. Заболевание сопровождается судорогами скелетной мускулатуры: мышц тела, конечностей, мимических мышц, мышц глотки. В результате сильнейшего тонуса и болезненного состояния мышц спины, то при этом спина больного выгибается дугой. Спазм мышц настолько бывает сильным, что возможны переломы костей и их отрыв от костей.

    В организм человека столбнячная палочка проникает через ранки, царапины и другие повреждения на коже. В некоторых регионах столбняк называют "Болезнью босых ног", так как даже заноза в стопе ноги или ржавый гвоздь могут стать воротами для инфекции.

    Меры профилактики: Снижение травматизма, особенно при работе с землёй (работать в рукавицах или перчатках), делать профилактические прививки, каждые 10 лет.

    Туберкулёз 


    Возбудитель заболевания бактерия туберкулёзной палочки (палочки Коха). Палочки туберкулёза устойчивы к факторам внешней среды. В воде они могут сохраняться до полугода. Долго остаются устойчивыми в темноте и в сырости. а при высокой температуре и освещении солнечными лучами быстро погибают. До 20 века туберкулёз был неизлечим Основной источник заражения- бацилловыделитель - это больной человек. Наибольшую опасность представляют больные с открытой формой туберкулёза. Заболевание часто развивается у людей, злоупотребляющих спиртными напитками, также туберкулёз широко распространён у лиц, находящихся в местах лишения свободы (тюрьмах, колониях), либо недавно освободившихся. Передаётся воздушно-капельным путём, также возможно внутриутробное заражение.

    Основной орган поражения-лёгкие. Есть признаки, по которым можно заподозрить туберкулёз - кашель, боли в груди, а также кровохарканье. Диагностируется туберкулёз при прохождении флюорографии.

    Основа лечения- применение противотуберкулёзных медицинских препаратов. Длительность лечения зависит от тяжести заболевания. В некоторых случаях прибегают к хирургическому вмешательству. Раньше, когда не были известны антибиотики, люди умирали от туберкулёза и называли эту болезнь"чахотка". Сейчас существует целая область медицины, занимающаяся туберкулёзом - фтизиатрия, а её специалисты-врачи фтизиаторы.

    Профилактика туберкулёза заключается в своевременном прохождении флюорографии, отказаться от вредных привычек- курения, особенно алкоголя, правильно питаться, вести здоровый образ жизни.

    Холера


    Возбудителем холеры является бактерия холерного вибриона. Встречается в открытых водоёмах, сточных водах, может развиваться в мясных продуктах и молоке. По данным Всемирной организации здравоохранения в год в мире заболевают холерой от 3-5 миллионов человек. Являясь высоко заразной, от холеры ежегодно умирает до 1,5 миллионов детей в год. Доказано, что эпидемии холеры возникают в странах с невысоким уровнем жизни. Более 2,5 миллиардов человек на Земле не знают, что такое туалет, не имеют возможности даже мыть руки. Мухи являются переносчиками инфекции. Холера страшное заболевание, которое в своё время унесло миллионы жизней людей. Холерный вибрион поражает органы желудочно-кишечного тракта, в основном стенки тонкого кишечника.

    Вода- основной путь передачи инфекции. Заражение происходит через инфицированные продукты питания, предметы обихода, грязную воду. Начинается заболевание внезапно. Боли в животе, частые акты дефекации, жажда, сухость во рту, упадок сил, понижение температуры тела, больной мёрзнет, появляется рвота, падает артериальное давление. В результате происходит резкое обезвоживание. Заболевание лечится с использованием антибиотиков.

    Меры профилактики: не пить воду из непроверенных источников, соблюдать правила личной гигиены, тщательно мыть сырые овощи и фрукты.

    Чума 


    Возбудителем заболевания является чумная палочка, которая имеет нежную капсулу и никогда не образует спор, что не позволяет нашим лейкоцитам активно бороться с возбудителем. Более половины населения Европы в Средние века унесла чума, известная как "чёрная смерть". Ужас этих эпидемий остался в памяти людей. Ни одна инфекционная бактериальная болезнь не унесла столько человеческих жизней как чума.

    В настоящее время данное заболевание остаётся особо опасной инфекцией. Около 2 тысяч человек заражается ежегодно, большая часть больных умирает. Бактерии чумы выделяют очень сильные токсины(яды).

    Возбудитель очень быстро размножается в органах и тканях организма человека, распространяясь с током крови и по лимфатическим сосудам по всему организму. Палочка бактерий способна даже проникать через неповреждённые кожные покровы. В почве не теряет жизнеспособность до нескольких месяцев и даже лет. В трупах животных живёт до нескольких месяцев. Бактерии чумы устойчивы к низким температурам и замораживанию. Зато чувствительны к высоким температурам, кислой реакции среды, солнечным лучам, которые их убивают за 2-3 часа.

    Возбудители чумы поражают не только человека, но и животных. Подвержены заболеванию кошки, лисицы, но а большинство составляют грызуны. Переносчиками заболевания являются блохи, паразитирующие на инфицированных грызунах. Опасность для человека представляют крысы, которые живут рядом с жилищем человека. Поэтому одной из мер по предупреждению заражения этим тяжелейшим заболеванием является борьба с грызунами.

    Заключение


    При написании исследовательской работы я изучила разновидности, строение, питание, дыхание, жизнедеятельность бактерий, и их роль в окружающей среде.

    А также в данной работе изучила самые распространенные бактериальные болезни и способы их профилактики, ведь количество бактериальных заболеваний человека огромно. На сегодняшний день болезни, вызываемые бактериями, являются самыми опасными, так как они способны не только усугубить качество жизни человека, но и привести к смертельному исходу. Поэтому нам необходимо знать не только возбудителей и симптомы бактериальных болезней человека, но и возможные причины этих заболеваний и возможные меры борьбы с ними.

    Список литературы



    1. Большая Медицинская Энциклопедия Б. В. Петровский 2016 г.


    2. Медицинская микробиология, вирусология и иммунология: 2т/под ред. В.В. Зверева, М.Н. Бойченко – М: ГЭОТАР – Медиа, 2014. – Т 2 – 478 с

    3. Гусев М. В., Минеева Л. А. Микробиология. М.: Медицина, 2013

    4. Тимаков В.Д., Левашев В.С. Микробиология / В.Д. Тимаков, В.С. Левашев.-М.:Медицина, 2013.- с. 349.

    5. https://medaboutme.ru/zdorove/publikacii/stati/sovety_vracha/bolezni_vyzyvaemye_bakteriyami/?utm_source=copypaste&utm_medium=referral&utm_campaign=copypaste

    6. http://diagnos.ru

    7. http://mymedicalportal.net


    ГАПОУ «ЛИПЕЦКИЙ МЕДИЦИНСКИЙ КОЛЛЕДЖ»

    Ведомость оценки результатов

    выполнения и защиты индивидуального проекта
    Учебный год __________________Семестр ______

    Специальность __________________

    Учебная группа __________________

    Учебная дисциплина______________

    Дата сдачи « ___ » _________________ 201__ г.

    Преподаватель ___________________



    п\п

    Ф.И.О. студента

    Номер зачетной книжки

    Тема индивидуального проекта

    Оценка

    Подпись преподавателя

    1.
















    2.
















    3.
















    Преподаватель _______________________ /______________/

    Председатель ЦМК ________________________ /_____________/

    Заместитель директора по УР ______________________/_____________/



    написать администратору сайта