Главная страница
Навигация по странице:

  • 1.4.1 Уплотнение осадков

  • 1.4.2 Стабилизация осадков

  • ВКР Киселевой Марины. Утилизация осадков сточных вод на очистных сооружениях пао Северский трубный завод


    Скачать 0.8 Mb.
    НазваниеУтилизация осадков сточных вод на очистных сооружениях пао Северский трубный завод
    Дата16.09.2022
    Размер0.8 Mb.
    Формат файлаdocx
    Имя файлаВКР Киселевой Марины.docx
    ТипРеферат
    #680255
    страница2 из 10
    1   2   3   4   5   6   7   8   9   10

    1.4 Обработка осадков сточных вод


    В процессе биохимической очистки в первичных и вторичных отстойниках образуются большие массы осадков: осадки минерального состава; осадки органического состава; смешанные осадки, содержащие как минеральные, так и органические вещества.

    Осадки сточных вод – суспензии, выделяемые из сточных вод в процессе их механической и биологической очистки. В зависимости от типа сооружений, применяемых для очистки городских сточных вод и обработки осадков, последние можно подразделять на следующие виды:

    • грубые примеси (отбросы), задерживаемые решетками;

    • тяжелые примеси (песок), задерживаемые песколовками;

    • плавающие примеси (жировые вещества), всплывающие в отстойниках;

    • сырой осадок – суспензия, включающая в основном оседающие взвешенные вещества, которые задерживаются первичными отстойниками;

    • активный ил, задерживаемый во вторичных отстойниках, – комплекс микроорганизмов коллоидного типа с адсорбированными и частично окисленными загрязнениями, извлеченными из сточных вод в процессе биологической очистки.

    Общий объем осадков, как правило, не превышает 1 % объема обрабатываемых стоков, при этом на долю активного ила приходится 60–70 % образующихся осадков.

    Осадок из первичных отстойников крайне неоднороден по фракционному составу: содержание в нем частиц крупностью более 7–10 мм составляет 5– 20 %, крупностью 1 – 7 мм – 9 – 33 %, крупностью менее 1 мм – 50 – 88 % массы сухого вещества. Осадок имеет влажность 92 – 96 %, слабокислую реакцию среды, в значительной степени насыщен микроорганизмами (в том числе патогенными), содержит яйца гельминтов.

    Активный ил по фракционному составу значительно однороднее осадка первичных отстойников; около 98 % (по массе) частиц ила имеют размер менее 1 мм. Влажность активного ила в зависимости от принятой схемы обработки составляет 96 - 99,5 %. Хлопья ила, состоящие из большого числа многослойно расположенных микробиальных клеток, заключенных в слизь, обладают очень развитой удельной площадью поверхности, составляющей около 100 м2 на 1 г сухого вещества. Так же как осадок, ил может быть заражен яйцами гельминтов [4].

    Твердая фаза осадков городских сточных вод состоит из органических и минеральных веществ. Органическая, или беззольная, часть в осадке из первичных отстойников составляет 65 – 75 % массы сухого вещества, в иле – 70 – 75 %. Соответственно зольность осадка колеблется от 25 до 35 %, ила – от 25 до 30%.

    Основными компонентами беззольной части осадка и ила являются белково-жиро-углеводоподобные вещества, в сумме составляющие 80–85 %. Остальные 15 – 20 % приходятся на долю лигнино-гумусового комплекса соединений. Количественные соотношения отдельных компонентов в осадке и иле различны. Если в беззольном веществе осадка преобладают жироподобные вещества и углеводы, то в активном иле значительную часть органического вещества составляют белки.

    Осадки сточных вод содержат ценные удобрительные вещества (азот, фосфор, калий, микроэлементы) и могут быть использованы в качестве удобрения.

    Технологические процессы обработки осадков сточных вод на всех очистных станциях механической, физико-химической и биологической очистки можно разделить на следующие основные стадии:

    • уплотнение (сгущение);

    • стабилизация осадков;

    • Обезвоживание осадков;

    • Обеззараживание осадков [1].

    1.4.1 Уплотнение осадков

    Уплотнение осадков связано с удалением свободной влаги и является необходимой стадией всех технологических схем обработки осадков. При уплотнении удаляется в среднем 60 % влаги, и масса осадка сокращается в 2,5 раза. Наиболее трудно уплотняется активный ил. Влажность активного ила составляет

    99,2 – 99,5 %. Для уплотнения используют гравитационный, флотационный, центробежный и вибрационный методы.

    Гравитационный метод уплотнения является наиболее распространенным и применяется для уплотнения избыточного активного ила и сброженных осадков. Он основан на оседании частиц дисперсной фазы. Продолжительность уплотнения зависит от свойств осадка и составляет от 4 до 24 ч. Уплотненные осадки имеют влажность 85-97 %. Для интенсификации процесса используют коагулирование с хлорным железом, перемешивание стержневыми мешалками, совместное уплотнение различных видов осадков, нагревание до 80-90 оС. В качестве илоуплотнителей используют вертикальные или радиальные отстойники.



    Рисунок 1.4 – Радиальный илоуплотнитель со стержневой мешалкой:

    1 - подводящий трубопровод; 2 - илоскреб с вертикальной решеткой
    Флотационный метод уплотнения осадков основан на прилипании частиц активного ила к пузырькам воздуха и всплывании вместе с ними на поверхность. Для образования пузырьков воздуха может быть использован метод напорной флотации, вакуум-флотации, электрофлотации и биологической флотации (за счет развития и жизнедеятельности микроорганизмов при подогреве осадка до 35-55 °С).

    Наибольшее распространение на практике получила напорная флотация. При этом в осадок активного ила подается определенное количество воды, предварительно насыщенной воздухом под давлением до 0,4 МПа. При снижении давления выделяется растворенный воздух в виде мелких пузырьков. Схема флотационного уплотнителя на рисунке 1.5.



    Рисунок 1.5 – Флотационный уплотнитель

    1 – ввод водовоздушной смеси; 2 – ввод исходного ила; 3 – дырчатая труба;

    4 – распределительное устройство; 5 – трубопровод для удаления осветленной жидкости; 6 – трубопровод для опорожнения уплотнителя; 7 – скребок;

    8 – лоток
    Применяется также центробежное уплотнение осадков в циклонах и центрифугах. Перспективно выбрационное уплотнение путем фильтрования осадка сточных вод через фильтрующие перегородки или с помощью погруженных в осадок вибраторов.

    1.4.2 Стабилизация осадков

    Этот процесс проводят для разрушения биологически разлагаемой части органического вещества на диоксид углерода, метан и воду. Ил, возникающий в процессе очистки сточных вод, может быть стабилизированный или нестабилизированный. Данное свойство зависит от септичности ила (присутствие различных микроорганизмов) и содержания в нём органических веществ, являющихся питательной средой для микроорганизмов. Ил является тем менее стабильным, чем больше в нём содержание биологически разлагаемых веществ, то есть раньше начинается процесс сбраживания, сопровождаемый неприятными запахами.

    Стабилизация осадков это не что иное, как ограничение возможности протекания вредных микробиологических процессов, вызывающих неприятные запахи (в значительной части процессов это означает уменьшение количества ила). Стабилизация достигается двумя принципиальными решениями:

    - эффективным удалением содержания биологически разлагаемой органики в осадке;

    - уничтожением микроорганизмов (обеззараживание).

    В многоступенчатом процессе обработки осадка, направленного на снижение его количества и негативного воздействия, два способа стабилизации не всегда могут быть разделены. Так называемые термофильные методы биологической стабилизации одновременно решают обе задачи, тогда как остальные методы (сбраживание при мезофильной температуре, сушка и т.д) могут решить только одну из этих задач.

    Стабилизации ила главным образом основана на удалении разложении органических веществ, то есть на уничтожении органики, служащей пищей для микроорганизмов.

    Основным методом обезвреживания осадков городских сточных вод является анаэробное сбраживание. Брожение называется метановым, так как в результате распада органических веществ осадков в качестве одного из основных продуктов образуется метан.

    В основе биохимического процесса метанового брожения лежит способность сообществ микроорганизмов в ходе своей жизнедеятельности окислять органические вещества осадков сточных вод.

    Промышленное метановое брожение осуществляется широким спектром бактериальных культур. Теоретически рассматривают брожение осадков, состоящее из двух фаз: кислой и щелочной.

    В первой фазе кислого или водородного брожения сложные органические вещества осадка и ила под действием внеклеточных бактериальных ферментов сначала гидролизуются до более простых: белки – до пептидов и аминокислот, жиры – до глицерина и жирных кислот, углеводы– до простых сахаров. Дальнейшие превращения этих веществ в клетках бактерий приводят к образованию конечных продуктов первой фазы, главным образом органических кислот. Более 90 % образующихся кислот составляют масляная, пропионовая и уксусная. Образуются и другие относительно простые органические вещества (альдегиды, спирты) и неорганические (аммиак, сероводород, диоксид углерода, водород).

    Кислую фазу брожения осуществляют обычные сапрофиты: факультативные анаэробы типа молочнокислых, пропионовокислых бактерий и строгие (облигатные) анаэробы типа маслянокислых, ацетонобутиловых, целлюлозных бактерий. Большинство видов бактерий, ответственных за первую фазу брожения, относится к спорообразующим формам.

    Во второй фазе щелочного или метанового брожения из конечных продуктов первой фазы образуются метан и угольная кислота в результате жизнедеятельности метанообразующих бактерий – неспороносных облигатных анаэробов, очень чувствительных к условиям окружающей среды [1].

    Метан образуется в результате восстановления СО2 или метильной группы уксусной кислоты:



    где АН2 – органическое вещество, служащее для метанообразующих бактерий донором водорода; обычно это жирные кислоты (кроме уксусной) и спирты (кроме метилового).

    Многие виды метанообразующих бактерий окисляют молекулярный водород, образующийся в кислой фазе. Тогда реакция метанообразования имеет вид:



    Микроорганизмы, использующие уксусную кислоту и метиловый спирт, осуществляют реакции:





    Все перечисленные реакции являются источниками энергии для метанообразующих бактерий, и каждая из них представляет собой серию последовательных ферментативных превращений исходного вещества. В настоящее время установлено, что в процессе метанообразования принимает участие витамин В12, которому приписывают основную роль в переносе водорода в энергетических окислительно-восстановительных реакциях у метанообразующих бактерий.

    Считается, что скорости превращения веществ в кислой и метановой фазах одинаковы, поэтому при устойчивом процессе брожения не происходит накопления кислот – продуктов первой фазы.

    Процесс сбраживания характеризуется составом и объемом выделяющегося газа, качеством иловой воды, химическим составом сброженного осадка.

    Образующийся газ состоит в основном из метана (60–67 %) и угольной кислоты (30– 33 %), содержание водорода не превышает 1– 2 %, азот составляет около 0,5 %. Высокое содержание метана в газе обуславливается распадом жиров и белков. Углеводы дают газ с большим содержанием угольной кислоты.

    Выделившийся при распаде белка сероводород H2S практически не попадает в газ, так как в присутствии аммиака легко связывается с имеющимися ионами железа в коллоидный сульфид железа FeS.

    Конечный продукт аммонификации белковых веществ – аммиак –связывается с углекислотой в карбонаты и гидрокарбонаты, которые обусловливают высокую щелочность иловой воды.

    В зависимости от химического состава осадков при сбраживании выделяется от 5 до 15 м3 газа на 1 м3 осадка.

    Скорость процесса брожения зависит от температуры. Так, при температуре осадка 25– 27 °С процесс длится 25– 30 дней; при 10 °С продолжительность его увеличивается до 4 месяцев и более. Для ускорения сбраживания и уменьшения объема необходимых для этого сооружений применяют искусственный подогрев осадка до температуры 30– 35 °С или 50– 55 °С.

    Для нормально протекающего процесса метанового брожения характерны слабощелочная реакция среды (рН 7,6), высокая щелочность иловой воды (65– 90 мг-экв/л) и низкое содержание жирных кислот (до 5– 12 мг-экв/л). Концентрация аммонийного азота в иловой воде достигает 500– 800 мг/л.

    Нарушение процесса может быть результатом перегрузки сооружения, изменения температурного режима, поступления с осадком токсичных веществ и т.д. Нарушение проявляется в накоплении жирных кислот, снижении щелочности иловой воды, падении рН. Резко уменьшается объем образующегося газа, увеличивается содержание в газе угольной кислоты и водорода – продуктов кислой фазы брожения.

    Кислотообразующие бактерии, ответственные за первую фазу брожения, более выносливы ко всякого рода неблагоприятным условиям, в том числе и к перегрузкам. Осадки, поступающие на сбраживание, в значительной степени обсеменены ими. Быстро размножаясь, кислотообразующие бактерии увеличивают ассимиляционную способность бактериальной массы и таким образом приспосабливаются к возросшим нагрузкам. Скорость первой фазы при этом возрастает, в среде появляется большое количество жирных кислот.

    Метановые бактерии размножаются очень медленно. Время генерации для некоторых видов составляет несколько дней, поэтому они не в состоянии быстро увеличивать численность культуры, а содержание их в сыром осадке незначительно. Как только нейтрализующая способность бродящей массы (запас щелочности) оказывается исчерпанной, рН резко снижается, что приводит к гибели метанообразующих бактерий.

    Большое значение для нормального сбраживания осадка имеет состав сточных вод, в частности наличие в них таких веществ, которые угнетают или парализуют жизнедеятельность микроорганизмов, осуществляющих процесс сбраживания осадка. Поэтому вопрос о возможности совместной очистки производственных и бытовых сточных вод следует разрешать в каждом отдельном случае в зависимости от их характера и физико-химического состава.

    При смешивании бытовых сточных вод с производственными необходимо, чтобы смесь сточных вод имела рН = 7...8 и температуру не ниже 6 ° и не выше 30 °С. Содержание ядовитых или вредных веществ не должно превышать предельно допустимой концентрации для микроорганизмов, развивающихся в анаэробных условиях. Например, при содержании меди в осадке более 0,5 % сухого вещества ила происходит замедление биохимических реакций второй фазы процесса сбраживания и ускорение реакций кислой фазы. При дозе гидроарсенита натрия 0,037 % к массе беззольного вещества свежего осадка замедляется процесс распада органического вещества.

    Для обработки и сбраживания сырого осадка применяют три вида сооружений: 1) септики (септиктенки); 2) двухъярусные отстойники;
    3) метантенки.

    Септики и отстойники применяются только при небольших производительностях. Наиболее широкое распространение получили метантенки.

    Эффективность процесса анаэробного сбраживания оценивается по степени распада органического вещества, количеству и составу образующегося биогаза, которые, в свою очередь, определяются химическим составом осадка, а также такими основными технологическими параметрами процесса, как доза загрузки метантенка, температура, влажность загружаемого осадка. Кроме того, существенную роль играют такие факторы, как режим загрузки и выгрузки осадка, система его перемешивания и др.

    В органическом веществе основную часть (до 80 %) составляют жиры, белки и углеводы. Именно за счет их распада образуется все количество выделяющегося биогаза, в том числе 60 – 65 % – за счет распада жиров, остальные 40– 35 % приходятся примерно поровну на долю углеводов и белков. Отсюда следует, что при сбраживании осадков первичных отстойников, содержащих больше жиров, образуется больше газа, чем при сбраживании активного ила, в котором больше белков. Даже при очень длительной продолжительности пребывания осадка в метантенке указанные компоненты органического вещества распадаются не полностью. Имеется максимальный предел сбраживания и, следовательно, максимальный выход газа с единицы распавшегося вещества, которые существенно различны у жиров, белков и углеводов. Различен и состав выделяющегося газа.

    При небольшом количестве осадков применяют септики и двухъярусные отстойники, которые являются комбинированными сооружениями; в них происходят осветление сточной воды и сбраживание (перегнивание) выпавшего осадка. Биологический процесс разложения органической массы в этих сооружениях происходит экстенсивно под влиянием внешних условий. Интенсивный процесс минерализации требует создания специальных условий, оптимально обеспечивающих все его фазы. Для его осуществления применяют метантенки и аэробные минерализаторы. Схема метантенка представлена на рисунке 1.6.



    Рисунок 1.6 - Схема метантенка

    1 — битумная обмазка; 2 — клинкерная кладка; 3 — теплоизоляция;

    4 — контрольный люк; 5 — газосборная горловина; 6 — труба для отвода газа;

    7 — механический смеситель; 8 —переливная труба; 9 — выпуск осадка с разных уровней; 10 — направляющая труба для циркуляции иловой смеси;

    11 — трубопровод для подачи пара на обогрев;12 — труба выпуска сброженного осадка; 13 — труба подачи осадка; 14 — труба для опорожнения метантенка
    Основными конструктивными элементами метантенков, выполняющими определенные технологические функции, являются: система подачи осадков на сбраживание и выгрузки стабилизированного осадка; система подогрева; система перемешивания бродящей массы; система сбора и отвода выделяющегося газа.

    В процессе сбраживания осадков выделение газа происходит неравномерно. Для поддержания постоянного давления в газовой сети на тупиковых концах ее устанавливают аккумулирующие газгольдеры. Мокрый газгольдер состоит из резервуара, заполненного водой, и колокола, перемещающегося на роликах по вертикальным направляющим. Вес колокола уравновешивается противодавлением газа. Благодаря этому при изменении объема газа под колоколом давление в газгольдере и газовой сети остается постоянным. Образующийся в метантенках газ используют как топливо. При невозможности сбора газа предусматривают его сжигание, используя специальное устройство – газовую свечу.

    В процессе анаэробной стабилизации получается незагнивающий и стабильный осадок, а содержание в нем калия, фосфора и азота позволяет применять его в виде удобрений.

    Достаточно высокое содержание метана в биогазе, следовательно, и высокая теплота сгорания, предоставляют широкие возможности применения биогаза. При разработке систем по производству и использованию биогаза выбираются оптимальные варианты комплектации установок из множества возможных с учетом многочисленных местных и внешних условий. С точки зрения утилизации энергии биогаза можно выделить следующие основные направления его использования:

    • для покрытия собственных энергетических нужд БГУ (в наиболее холодный период года практически весь потенциал биогаза используется для энергообеспечения установки);

    • в качестве топлива для получения горячей воды или пара на покрытие технологических нужд очистных сооружений или сельскохозяйственных производств;

    • для сушки сброженного осадка;

    • в качестве топлива для получения теплого воздуха или горячих газов на сушку сельхозпродукции или обогрев сельскохозяйственных зданий;

    • в теплицах для отопления и подкормки растений углекислым газом;

    • для замены мазута при термической переработки отходов (25 т мазута в сутки заменяется 45000 м3биогаза);

    • в качестве горючего для двигателей транспортных средств;

    • для получения электроэнергии;

    • для подпитки сетей природного газа.

    Процесс брожения необходимо осуществлять при выбранном оптимальном температурном режиме, даже кратковременное нарушение которого, особенно в сторону снижения температуры, приводит к торможению стадии метаногенеза, накоплению кислот за счет активной работы более устойчивых гидролитических организмов, нарушению трофических связей и процесса в целом.

    Температурный режим сбраживания тесно связан со временем пребывания осадка в метантенке или суточной дозой загрузки метантенка по объему (%), а также количеством органического вещества загружаемого осадка на единицу рабочего объема метантенка (кг/м3). Если максимальный распад органического вещества зависит только от его химического состава, то с уменьшением продолжительности сбраживания, т.е. с повышением дозы загрузки, распад органического вещества и выход газа снижаются при всех температурных режимах. В зоне термофильных температур это снижение происходит медленнее, чем в зоне мезофильных температур. Отсюда следует, чем выше доза загрузки, тем выше преимущества температурного процесса по степени распада и выходу газа.

    В связи с этим термофильный режим сбраживания, в основном применяемый в нашей стране, имеет преимущества перед мезофильным, так как позволяет уменьшить объемы метантенков, кроме того, обеспечивает глубокое обеззараживание осадков не только от поточной микрофлоры, но и от гельминтов. Однако, недостатком термофильного сбраживания является низкая водоотдающая способность сброженного осадка, что требует его промывки при последующем механическом обезвоживании. В свою очередь, мезофильный режим сбраживания не обеспечивает обеззараживания осадка, требует больших объемов метантенков, но позволяет получить сброженный осадок, лучше поддающийся последующему обезвоживанию.

    С экономической точки зрения самым значительным недостатком термофильного технологического способа является потребность в тепловой энергии, которая по сравнению с мезофильным способом приблизительно в два раза больше. Эту тепловую энергию нужно будет выплачивать в качестве эксплуатационных расходов ежедневно.

    Значительным недостатком термофильного решения является также и то, что для этого решения требуется более сложное технологическое оборудование, которое по этой причине представляет собой более существенный эксплуатационный риск, а также означает более существенную чувствительность термофильных микробиологических процессов. Это является существенной проблемой особенно по той причине, что в настоящее время в сточных водах и в иле еще могут присутствовать токсичные металлы и другие химикаты.

    Высокая влажность и большое содержание белка в активном иле приводят к низкому выходу газа при анаэробном сбраживании. Исходя из этого, выгоднее в метантенках сбраживать один сырой осадок из первичных отстойников, а активный ил подвергать аэробной стабилизации.
    1   2   3   4   5   6   7   8   9   10


    написать администратору сайта