Главная страница
Навигация по странице:

  • Реализованная экологическая ниша

  • Размерная дифференциация

  • 56. Биосфера – глобальный уровень существования живого. Структура и функции живого вещества в биосфере. 1. Энергетическая

  • Окислительно-восстановительная

  • 57. Учение о биосфере В.И. Вернадского. Законченное учение о биосфере было создано нашим соотечественником академиком Владимиром Ивановичем Вернадским

  • «Химическое строение биосферы Земли и ее окружения»

  • живое вещество и стал называть биосферой область существования на Земле «живого вещества»

  • Живое вещество планеты Земля

  • биология. В зависимости от способов адаптации растений к влажности выделяют несколько


    Скачать 184.58 Kb.
    НазваниеВ зависимости от способов адаптации растений к влажности выделяют несколько
    Дата27.10.2020
    Размер184.58 Kb.
    Формат файлаdocx
    Имя файлабиология.docx
    ТипДокументы
    #145920
    страница4 из 5
    1   2   3   4   5

    55. Экологические ниши.

    Положение вида, которое он занимает в общей системе биоценоза, комплекс его биоценотических связей и требований к абиотическим факторам среды называют экологической нишей вида.

    Концепция экологической ниши оказалась очень плодотворной для понимания законов совместной жизни видов. Над ее развитием работали многие экологи: Дж. Гриннелл, Ч. Элтон, Г. Хатчинсон, Ю. Одум и др.

    Понятие «экологическая ниша» следует отличать от понятия «местообитание». В последнем случае подразумевается та часть пространства, которая заселена видом и которая обладает необходимыми абиотическими условиями для его существования. Экологическая ниша вида зависит не только от абиотических условий среды, но и в не меньшей мере от его биоценотического окружения. Характер занимаемой экологической ниши определяется как экологическими возможностями вида, так и тем, насколько эти возможности могут быть реализованы в конкретных биоценозах. Это характеристика того образа жизни, который вид может вести в данном сообществе.

    Г. Хатчинсон выдвинул понятия фундаментальной и реализованной экологической ниши. Под фундаментальнойпонимается весь набор условий, при которых вид может успешно существовать и размножаться. В природных биоценозах, однако, виды осваивают далеко не все пригодные для них ресурсы вследствие, прежде всего, конкурентных отношений.Реализованная экологическая ниша – это положение вида в конкретном сообществе, где его ограничивают сложные биоценотические отношения. Иными словами, фундаментальная экологическая ниша характеризует потенциальные возможности вида, а реализованная – ту их часть, которая может осуществиться в данных условиях, при данной доступности ресурса. Таким образом, реализованная ниша всегда меньше, чем фундаментальная.

    В экологии широко обсуждается вопрос о том, сколько экологических ниш может вместить биоценоз и сколько видов какой-либо конкретной группы, имеющих близкие требования к среде, могут ужиться вместе.

    Специализация вида по питанию, использованию пространства, времени активности и другим условиям характеризуется как сужение его экологической ниши, обратные процессы – как ее расширение. На расширение или сужение экологической ниши вида в сообществе большое влияние оказывают конкуренты. Правило конкурентного исключения, сформулированное Г. Ф. Гаузе для близких по экологии видов, может быть выражено таким образом, что два вида не уживаются в одной экологической нише.

    Эксперименты и наблюдения в природе показывают, что во всех случаях, когда виды не могут избежать конкуренции за основные ресурсы, более слабые конкуренты постепенно вытесняются из сообщества. Однако в биоценозах возникает много возможностей хотя бы частичного разграничения экологических ниш близких по экологии видов.

    Выход из конкуренции достигается благодаря расхождению требований к среде, изменению образа жизни, что, другими словами, является разграничением экологических ниш видов. В этом случае они приобретают способность сосуществовать в одном биоценозе. Каждый из живущих вместе видов в отсутствие конкурента способен на более полное использование ресурсов. Это явление легко наблюдать в природе. Так, травянистые растения ельника способны довольствоваться небольшим количеством почвенного азота, которое остается от перехвата его корнями деревьев. Однако если на ограниченной площадке обрубить корни этих елей, условия азотного питания трав улучшаются и они бурно идут в рост, принимая густо-зеленую окраску. Улучшение условий жизни и увеличение численности какого-либо вида в результате удаления из биоценоза другого, близкого по экологическим требованиям, называется конкурентным высвобождением.

    Разделение совместно живущими видами экологических ниш с частичным их перекрыванием – один из механизмов устойчивости природных биоценозов. Если какой-либо из видов резко снижает свою численность или выпадает из состава сообщества, его роль берут на себя другие. Чем больше видов в составе биоценоза, тем ниже численность каждого из них, тем сильнее выражена их экологическая специализация. В этом случае говорят о «более плотной упаковке экологических ниш в биоценозе».

    У близкородственных видов, живущих вместе, обычно наблюдаются очень тонкие разграничения экологических ниш. Так, пасущиеся в африканских саваннах копытные по-разному используют пастбищный корм: зебры обрывают в основном верхушки трав, антилопы гну кормятся тем, что оставляют им зебры, выбирая при этом определенные виды растений, газели выщипывают самые низкие травы, а антилопы топи довольствуются высокими сухими стеблями, оставшимися после других травоядных. Такое же «разделение труда» в южноевропейских степях осуществляли когда-то дикие лошади, сурки и суслики (рис. 92).

    Рис. 92. Разные виды травоядных поедают траву на разной высоте в африканских саваннах (верхние ряды) и в степях Евразии (нижние ряды) (по Ф. Р. Фуэнте, 1972; Б. Д. Абатурову, Г. В. Кузнецову, 1973)

    В наших зимних лесах насекомоядные птицы, кормящиеся на деревьях, также избегают конкуренции друг с другом за счет разного характера поиска. Например, поползни и пищухи собирают пищу на стволах. При этом поползни стремительно обследуют дерево, быстро схватывая попадающихся на глаза насекомых или семена, оказавшиеся в крупных трещинах коры, тогда как мелкие пищухи тщательно обшаривают на поверхности ствола малейшие щелки, в которые проникает их тонкий шиловидный клюв. Зимой в смешанных стайках большие синицы ведут широкий поиск на деревьях, в кустах, на пнях, а часто и на снегу; синицы-гаички обследуют преимущественно крупные ветви; длиннохвостые синицы ищут корм на концах ветвей; мелкие корольки тщательно обшаривают верхние части крон хвойных.

    Муравьи существуют в природных условиях многовидовыми ассоциациями, члены которых различаются по образу жизни. В лесах Подмосковья чаще всего обнаруживается такая ассоциация видов: доминантный вид (Formica rufa, F. aquilonia или Lasius fuliginosus) занимает несколько ярусов, в почве активен L. flavus, в подстилке леса – Myrmica rubra, напочвенный ярус осваивают L. niger и F. fusca, деревья – Camponotus herculeanus. Специализация к жизни в разных ярусах отражается в жизненной форме видов. Кроме разделения в пространстве, муравьи отличаются и по характеру добывания пищи, по времени суточной активности.

    В пустынях наиболее развит комплекс муравьев, собирающих пищу на поверхности почвы (герпетобионтов). Среди них выделяются представители трех трофических групп: 1) дневные зоонекрофаги – активны в самое жаркое время, питаются трупами насекомых и активными днем мелкими живыми насекомыми; 2) ночные зоофаги – охотятся на малоподвижных насекомых с мягкими покровами, которые появляются на поверхности только ночью, и на линяющих членистоногих; 3) карпофаги (дневные и ночные) – поедают семена растений.

    Совместно могут обитать по нескольку видов из одной трофической группы. Механизмы выхода из конкуренции и разграничения экологических ниш при этом следующие.

    1. Размерная дифференциация (рис. 93). Например, средние веса рабочих особей трех наиболее обычных в песках Кызылкумов дневных зоонекрофагов относятся как 1:8:120. Примерно такое же соотношение весов у некрупной кошки, рыси и тигра.

    Рис. 93. Сравнительные размеры четырех видов муравьев из группы дневных зоонекрофагов в песчаной пустыне Центральных Каракумов и распределение добычи трех видов по весовым классам (по Г. М. Длусскому, 1981): 1– средний и крупный рабочие Cataglyphis setipes; 2 – С. pallida; 3 – Acantholepis semenovi; 4 – Plagiolepis pallescens

    56. Биосфера – глобальный уровень существования живого. Структура и функции живого вещества в биосфере.

    1. Энергетическая – аккумулирование энергии и перераспределение ее по пищевым цепям.

    Жизнь возникает в соответствии с принципом Ле Шателье-Брауна, как ответ на рост энтропии, то есть на рассеяние энергии в окружающей среде. Поэтому концентрация энергии - это наиболее естественная функция жизни. Наличие живой оболочки планеты препятствует остыванию ее поверхности, аккумулируя в себе энергию, излучаемую в космос. Правда, сейчас жизнь биосферы развивается в основном в потоке солнечной энергии, аккумулируя ее в себе и препятствуя прямому отражению ее в космос. Эта энергия передается по пищевой цепи от одной формы жизни к другой. По мере этого движения ее энтропия значительно возрастает. В конечном итоге она переходит в тепловую форму и излучается за пределы планеты. Поэтому энтропия излучения, отраженного с поверхности планеты, оказывается существенно больше энтропии излучения, поглощаемого планетой. Именно за счет этой разницы энтропий существует жизнь на планете.

    Таким образом, основным механизмом накопления энергии в биосфере является реакция фотосинтеза. Имеется также довольно незначительный процент хемосинтезирующих живых существ, чей жизненный цикл опирается на энергию химических соединений. Это разного рода бактерии (железо-бактерии, серобактерии, азотобактерии и др.). Обнаружены целые экосистемы, функционирование которых основано на активности хемосинтезирующих бактерий и не зависящих от продуктов фотосинтеза. Это глубоководные системы, где в абсолютной темноте вблизи выходов горячей воды, богатой минеральными солями и серой, помимо бактерий существуют и уникальные многоклеточные животные, типа двустворчатых моллюсков длиной около 30 см и трехметровые черви, получающие энергию от хемосинтезирующих бактерий. Возможно, было время, когда такие формы жизни были более разнообразными и заполняли всю поверхность Земли, до которой ввиду интенсивной вулканической деятельности не могли пробиться солнечные лучи.

    2. Окислительно-восстановительная – окисление вещества в процессе жизнедеятельности и восстановление в процессе разложения при дефиците кислорода.

    Наряду с фотосинтезом в зеленых растениях на Земле происходит почти равное ему по масштабу окисление органических веществ в процессе дыхания, брожения, гниения с выделением воды, углекислого газа и теплоты, которая после этого излучается в космическое пространство. Существенно меньшая часть энергии Солнца консервируется в земной коре, или, по словам Вернадского, «уходят в геологию», формируя залежи каменного угля, нефти, торфа и т.п. Эти процессы связаны с протеканием в бескислородной среде реакций восстановления, сопровождающихся образованием и накоплением сероводорода и метана.

    3. Газовая – способность изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом.

    Фотосинтез привел к постепенному уменьшению в атмосфере углекислоты и накоплению кислорода и озона. При этом в развитии биосферы наблюдалось по крайней мере два переломных момента:

    • первая точка Пастера (1,2 млрд. лет назад), когда количество кислорода достигло 1 % от современного уровня и появились первые аэробные организмы (живущие только в кислородной среде, в отличие от анаэробных, живущих в бескислородной среде);

    • вторая точка Пастера, когда количество кислорода достигло 10 % от современного уровня , создались условия для синтеза озона и озонового слоя, что защитило организмы от ультрафиолетовых лучей. До этого данную функцию выполняли густые водяные облака.

    4. Деструктивная – разрушение погибшей биоорганики и костных веществ.

    Это один из важнейших элементов круговорота веществ в биосфере, обеспечивающего непрерывность жизни путем превращения сложных органических соединений в минеральные вещества, необходимые для растений, стоящих в самых первых звеньях пищевых цепей. Практически все живые организмы биосферы за исключением растений в той или иной мере являются деструкторами (разрушителями). Однако главная роль в этом процессе принадлежит грибам и бактериям. Л.Пастер назвал бактерии «великими могильщиками природы». Одновременно жизнь участвует и в разрушении костных веществ (в частности горных пород), доводя их постепенно до состояния, после которого они могут быть вовлечены в круговорот жизни (так измельченные горные породы являются необходимым компонентом почвы).

    5. Рассеивающая – рассеяние живого вещества на больших пространствах.

    Например, рассеяние гемоглобина крови кровососущими или рассеяние органики экскрементов или трупов разного рода деструкторами.

    6. Концентрационная – способность организмов концентрировать в своем теле рассеянные элементы окружающей среды.

    Любое живое существо в процессе своей жизнедеятельности буквально по молекулам собирает из окружающей среды необходимые для него вещества и консервирует их в своей структуре. Поэтому, например, концентрация марганца в теле некоторых организмов превышает его концентрацию в окружающей среде в миллионы раз. В условиях антропогенного загрязнения окружающей среды побочным следствием этого может являться накопление растениями, которые мы потребляем в пищу, веществ, которые являются токсичными для нашего организма. Результатом концентрационной деятельности живых организмов являются залежи руд, известняков, горючих ископаемых и т.п.

    7. Транспортная – перенос и перераспределение вещества и энергии.

    Это является одним из механизмов рассеивающей функции живого вещества. Часто такой перенос осуществляется на громадные расстояния, например, при миграциях и кочевках животных. Это может также способствовать и концентрации элементов среды, достаточно вспомнить птичьи базары.

    8. Средообразующая – преобразование физико-химических параметров окружающей среды.

    В широком смысле результатом данной функции является вся природная среда. Она создана живыми организмами, они же и поддерживают ее в определенном стабильном состоянии. Так состав атмосферы и гидросферы - это продукт жизнедеятельности в биосфере. Живые организмы создали особый тип биокостного вещества - почвы. Коралловые заросли создают в океанах целые острова. Примером могут также служить леса, в которых микроклимат существенно отличается от микроклимата поля. Анализ показывает, что при отсутствии жизни на Земле, условия на ней были бы такими, что по нашим понятиям жизнь на ней была бы попросту невозможной:

    • ее атмосфера на 98 % состояла бы из углекислого газа (сейчас его около 0,03 %);

    • на 1,9 % – из азота (сейчас на Земле 79 % азота, являющегося вопреки своему названию (азот - не поддерживающий жизни) основным элементом при построении аминокислот);

    • кислорода практически не было бы (сейчас 21 %);

    • средняя температура поверхности 290±50С°, не оставляющая никаких шансов на наличие воды в жидком состоянии.

    Словом, условия весьма похожие на условия планеты Венера.

    9. Информационная – накопление информации и закрепление ее в наследственных структурах.

    Эта функция пока еще мало изучена. Но, по всей видимости, ее важность превосходит все остальные функции живого вещества.

    57. Учение о биосфере В.И. Вернадского.

    Законченное учение о биосфере было создано нашим соотечественником академиком Владимиром Ивановичем Вернадским. Основные идеи В. И. Вернадского в учении о биосфере сложились в начале XX в. Он излагал их в лекциях в Париже. В 1926 г. его идеи о биосфере были сформулированы в книге «Биосфера», состоящей из двух очерков: «Биосфера и космос» и «Область жизни». Позднее эти же идеи были развиты в большой монографии «Химическое строение биосферы Земли и ее окружения», которая, к сожалению, была опубликована только через 20 лет после его смерти.

    Прежде всего В.И. Вернадский определил пространство, которое охватывает биосфера Земли, — вся гидросфера до максимальных глубин океанов, верхняя часть литосферы материков до глубины около 3 км и нижняя часть атмосферы до верхней границы тропосферы. Он ввел в науку интегральное понятие живое вещество и стал называть биосферой область существования на Земле «живого вещества», представляющего собой сложную совокупность микроорганизмов, водорослей, грибов, растений и животных. По существу, речь идет о единой термодинамической оболочке (пространстве), в которой сосредоточена жизнь и
    осуществляется постоянное взаимодействие всего живого с неорганическими условиями среды (пленка жизни). Он показал, что биосфера отличается от других сфер Земли тем, что внутри нее происходит геологическая деятельность всех живых организмов. Живые организмы, преобразуя солнечную энергию, являются мошной силой, влияющей на геологические процессы.

    Специфическая черта биосферы как особой оболочки Земли — непрерывно происходящий в ней кругооборот веществ, регулируемый деятельностью живых организмов. По мнению В.И. Вернадского, в прошлом явно недооценивали вклад живых организмов в энергетику биосферы и их влияние на неживые тела. Хотя живое вещество по объему и массе составляет незначительную часть биосферы, но оно играет основную роль в геологических процессах, связанных с изменением облика нашей планеты.

    Занимаясь созданной им наукой биохимией, изучающей распределение химических элементов по поверхности планеты, В.И. Вернадский пришел к выводу, что нет практически ни одного элемента из таблицы Менделеева, который не включался бы в живое вещество. Он сформулировал три важных биогеохимических принципа:

    • Биогенная миграция химических элементов в биосфере всегда стремится к своему максимальному проявлению. Этот принцип в наши человеком дни нарушен.

    • Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых в биосфере форм жизни, происходит в направлении, усиливающем биогенную миграцию атомов.

    • Живое вещество находится в непрерывном химическом обмене с окружающей его средой, создающейся и поддерживающейся на Земле космической энергией Солнца. Вследствие нарушения двух первых принципов космические воздействия из поддерживающих биосферу могут превратиться в разрушающие ее факторы.

    Перечисленные геохимические принципы соотносятся со следующими важными выводами В.И. Вернадского: каждый организм может существовать только при условии постоянной тесной связи с другими организмами и неживой природой; жизнь со всеми ее проявлениями произвела глубокие изменения на нашей планете.

    Исходной основой существования биосферы и происходящих в ней биохимических процессов является астрономическое положение нашей планеты и, в первую очередь, ее расстояние от Солнца и наклон земной оси к плоскости земной орбиты. Это пространственное расположение Земли определяет в основном климат Земли, а последний, в свою очередь, — жизненные циклы всех существующих на ней организмов. Солнце является основным источником энергии биосферы и регулятором всех геологических, химических и биологических процессов на Земле.

    Живое вещество планеты Земля
    1   2   3   4   5


    написать администратору сайта