Главная страница

ОГЭ Ключи и критерии 24.03.2022 г. (1). Вариант 1


Скачать 0.49 Mb.
НазваниеВариант 1
Дата06.04.2022
Размер0.49 Mb.
Формат файлаdoc
Имя файлаОГЭ Ключи и критерии 24.03.2022 г. (1).doc
ТипДокументы
#448865

Ключи регионального репетиционного основного государственного экзамена
24 марта 2022 года




Вариант 1

Вариант 2

1

143

234

2

30

34

3

26

30

4

168

162

5

570

957

6

15,6

0,5

7

1

4

8

108

81

9

1

2

10

0,35

0,45

11

312

213

12

9

6

13

2

1

14

363

434

15

10

12

16

101

134

17

54

70

18

0,5

1,5

19

1

1



КРИТЕРИИ ПРОВЕРКИ И ОЦЕНИВАНИЯ ВЫПОЛНЕНИЯ ЗАДАНИЙ С РАЗВЕРНУТЫМ ОТВЕТОМ

ВАРИАНТ 1

Задание 20

Баллы

Критерии оценки выполнения задания

2

Уравнение решено верно.

1

Решение доведено до конца, но допущена ошибка вычислительного характера или описка, с её учётом дальнейшие шаги выполнены верно.

0

Другие случаи, не соответствующие указанным критериям.

 Решение.

Пусть   тогда  , откуда   или 

Вернемся к исходной переменной:



Ответ: 

Задание 21

Баллы

Критерии оценки выполнения задания

2

Ход решения верный, оба его шага выполнены (составлено уравнение; решено уравнение), получен верный ответ.

1

Ход решения верный, правильно выполнен первый шаг (составлено уравнение), но при решении уравнения допущена вычислительная ошибка или описка.

0

Другие случаи, не соответствующие указанным критериям.


Решение:




v

t

s

1

x

990/x

990

2

x-9

990/(x-9)

990

Так как первый прибыл к финишу на 1 час раньше второго, то составим уравнение:

, откуда x=99.

Ответ: 99 км/ч.
Задание 22


Баллы

Критерии оценки выполнения задания

2

График построен правильно, верно указаны все значения , при которых прямая имеет с графиком только две общие точки.

1

Правильно построен график, но отсутствует ответ на вопрос или при правильно вычисленных координатах точек графика допущена неточность в построении, ответ дан с учетом этой неточности.

0

Другие случаи, не соответствующие указанным критериям.


Р ешение: Построим график функции .

Соотношение задает семейство прямых, параллельных оси . Прямая будет иметь ровно две общие точки с графиком если , .
Ответ: , .

Задание 23


Баллы

Критерии оценивания выполнения заданий

2

Ход решения верный, все его шаги выполнены правильно, получен верный ответ.

1

При верных рассуждениях допущена вычислительная ошибка,

возможно приведшая к неверному ответу

0

Другие случаи, не соответствующие указанным выше критериям

Решение:








Ответ: 12

Задание 24

Баллы

Критерии оценивания выполнения задания

2

Доказательство верное

1

Доказательство содержит неточности

0

Другие случаи, не соответствующие указанным выше критериям




Решение. Проведём FM параллельно AB (см. рисунок). Тогда CD = AM = MD., следовательно, параллелограмм DCFM является ромбом. Диагональ CM ромба DCFM является биссектрисой угла BCD.
Задание 25

Баллы

Критерии оценивания выполнения задания

2

Ход решения верный, все его шаги выполнены правильно, получен верный ответ

1

Ход решения верный, чертёж соответствует условию задачи, но пропущены существенные объяснения или допущена вычислительная ошибка

0

Другие случаи, не соответствующие указанным выше критериям

Р ешение. Рассмотрим треугольник ABD:

Пусть AD пересекается с BE в точке O. Биссектриса BE перпендикулярна AD, то есть является высотой треугольника ABD, следовательно, треугольник ABD -равнобедренный треугольник с основанием AD. Тогда BO - медиана, следовательно,







Если BE - биссектриса, то по свойству биссектрисы

тогда







то есть





По теореме Пифагора для прямоугольного треугольника AOE:





По теореме Пифагора для прямоугольного треугольника AOB:






 

Ответ:
ВАРИАНТ 2

Задание 20

Баллы

Критерии оценки выполнения задания

2

Уравнение решено верно.

1

Решение доведено до конца, но допущена ошибка вычислительного характера или описка, с её учётом дальнейшие шаги выполнены верно.

0

Другие случаи, не соответствующие указанным критериям.

 Решение.

Пусть



тогда ,

откуда или

Вернемся к исходной переменной:



Ответ:

Задание 21

Баллы

Критерии оценки выполнения задания

2

Ход решения верный, оба его шага выполнены (составлено уравнение; решено уравнение), получен верный ответ.

1

Ход решения верный, правильно выполнен первый шаг (составлено уравнение), но при решении уравнения допущена вычислительная ошибка или описка.

0

Другие случаи, не соответствующие указанным критериям.


Решение. Пусть x км/ч — скорость первого автомобиля, , тогда км/ч — скорость второго автомобиля.

Составим таблицу по данным задачи:

 

Скорость, км/ч

Время, ч

Расстояние, км

Первый автомобиль

x



240

Второй автомобиль





240

 Первый автомобиль прибыл к финишу на 1 ч. быстрее второго, откуда:





Корень −60 не подходит по условию задачи, следовательно, скорость первого автомобиля равна 80 км/ч.

 Ответ: 80 км/ч.
Задание 22


Баллы

Критерии оценки выполнения задания

2

График построен правильно, верно указаны все значения , при которых прямая имеет с графиком только две общие точки.

1

Правильно построен график, но отсутствует ответ на вопрос или при правильно вычисленных координатах точек графика допущена неточность в построении, ответ дан с учетом этой неточности.

0

Другие случаи, не соответствующие указанным критериям.


Р ешение:

Построим график функции .

Соотношение задает семейство прямых, параллельных оси . Прямая будет иметь ровно две общие точки с графиком если , .
Ответ: , .

Задание 23


Баллы

Критерии оценивания выполнения заданий

2

Ход решения верный, все его шаги выполнены правильно, получен верный ответ.

1

При верных рассуждениях допущена вычислительная ошибка,

возможно приведшая к неверному ответу

0

Другие случаи, не соответствующие указанным выше критериям

Решение:








Ответ: 15
Задание 24

Баллы

Критерии оценивания выполнения задания

2

Доказательство верное

1

Доказательство содержит неточности

0

Другие случаи, не соответствующие указанным выше критериям

Р ешение. Проведём LN параллельно AD (см. рис.). Тогда AL = AD = ND. Следовательно, параллелограмм ADNL является ромбом. Диагональ AN ромба ADNL является биссектрисой угла BAD.

Задание 25

Баллы

Критерии оценивания выполнения задания

2

Ход решения верный, все его шаги выполнены правильно, получен верный ответ

1

Ход решения верный, чертёж соответствует условию задачи, но пропущены существенные объяснения или допущена вычислительная ошибка

0

Другие случаи, не соответствующие указанным выше критериям

Решение. Пусть P  - точка пересечения отрезков BE и AD (см. рис.). Треугольник ABD — равнобедренный, так как его биссектриса BP является высотой. Поэтому


.

По свойству биссектрисы треугольника



Проведём через вершину B прямую, параллельную AC. Пусть K — точка пересечения этой прямой с продолжением медианы AD. Тогда



Из подобия треугольников APE и KPB следует, что



Поэтому

PE=11 и PB=33

Следовательно









Ответ: ;  ; .

.


написать администратору сайта