освещение. Освещение. Виды освещения
Скачать 67.51 Kb.
|
Освещение Практически всю информацию из внешнего мира человек получает с помощью зрения, поэтому роль света и цвета для человеческой деятельности огромна. Восприятие света является важнейшим элементом нашей способности действовать, поскольку позволяет оценивать местонахождение, форму и цвет окружающих нас предметов. Даже такие элементы человеческого самочувствия, как душевное состояние или степень усталости, зависят от освещения и цвета окружающих предметов. Все окружающие нас тела и предметы делятся на светящиеся и несветящиеся. Светящиеся природные и искусственно созданные тела испускают электромагнитные излучения с различными длинами волн, но только излучения с длиной волны от 380 до 780 нм вызывают у нас ощущение света и цвета. При действии на глаз излучений с длиной волны меньше 380 нм (инфракрасное излучение) и больше 780 нм (ультрафиолетовое излучение) световых и цветовых ощущений не возникает. Каждый вид деятельности, связанный с необходимостью различения того или иного объекта, требует определенного уровня освещенности на том участке, где эта деятельность осуществляется. Обычно чем сильнее затруднено зрительное восприятие, тем выше должен быть средний уровень освещенности. Недостаточная освещенность рабочей зоны и пониженная контрастность вызывают напряженность зрительного анализатора, что, в свою очередь, может привести к нарушениям зрения. В условиях, когда общая освещенность отсутствует, выполнение работ невозможно без индивидуальных головных или ручных светильников. С другой стороны, чрезмерная локальная яркость может вызывать ослепление. Когда в поле зрения попадает яркий источник света, глаз на какое-то время теряет способность различать предметы. Ослепление может быть прямым, когда оно вызвано нахождением ярких источников света в поле зрения, или отраженным, когда свет отражается от поверхностей с высоким коэффициентом отражения. Виды освещения Производственные здания и рабочие площадки предприятий освещаются естественным светом небосвода (прямым или отраженным), искусственным светом, а также комбинированным. В зависимости от источника освещения, конструктивного исполнения и функционального назначения различают следующие виды освещения. Естественное освещение – освещение помещений светом, исходящим от неба (прямым или отраженным), проникающим через световые проемы в наружных ограждающих конструкциях. Оно подразделяется на боковое, верхнее и комбинированное. Нормируемой характеристикой такого освещения является коэффициент естественной освещенности. Боковое естественное освещение – это естественное освещение помещения через световые проемы в наружных стенах; верхнее естественное освещение – это естественное освещение помещения через фонари, световые проемы в стенах (в местах перепада высот здания); комбинированное естественное освещение – сочетание верхнего и бокового естественного освещения. Искусственное освещение – это освещение помещения источниками искусственного света при недостатке естественного освещения. Оно бывает рабочее, аварийное, охранное и дежурное (но СНиП 23-05-95 "Естественное и искусственное освещение"); общее и комбинированное. При необходимости часть светильников рабочего или аварийного освещения используется для дежурного освещения. Рабочее освещение обеспечивают во всех помещениях, а также на участках открытых пространств, предназначенных для работы, прохода людей и движения транспорта. Для помещений, имеющих зоны с разными условиями естественного освещения и с разными режимами работы, предусматривается раздельное управление рабочим освещением. Аварийное освещение – это освещение объектов различного назначения, не прекращающееся или автоматически вводимое в действие при внезапном отключении рабочих (основных) источников света. Оно предназначено для обеспечения эвакуации людей или временного продолжения работы на объектах, где внезапное отключение освещения создает опасность травматизма или недопустимого нарушения технологического процесса. Аварийное освещение подразделяется: – на освещение безопасности, т.е. освещение, предусматриваемое на случай аварийного отключения рабочего освещения, в результате чего возможны длительное нарушение технологического процесса; нарушение работы таких объектов, как электрические станции, узлы радио- и телевизионных передач и связи, диспетчерские пункты, насосные установки водоснабжения, канализации и теплофикации, установки вентиляции и кондиционирования воздуха в производственных помещениях, где недопустимо прекращение работ, и т.п.; – эвакуационное освещение, предназначенное для эвакуации людей из помещений при аварийном отключении нормального освещения. Такое освещение (в помещениях или в местах производства работ вне зданий) следует предусматривать в местах, опасных для прохода людей; в проходах и на лестницах, служащих для эвакуации людей, при числе эвакуирующихся более 50 человек; на лестничных клетках жилых зданий высотой шесть этажей и более; в производственных помещениях без естественного света. Охранное освещение (при отсутствии специальных технических средств охраны) предусматривается вдоль границ территорий, охраняемых в ночное время. Могут использоваться любые источники света, за исключением случаев, когда охранное освещение автоматически включается только при срабатывании охранной сигнализации или других технических средств. В таких случаях применяются лампы накаливания. Дежурное освещение – это освещение в нерабочее время. В данном случае область применения, величины освещенности, равномерность и требования к качеству не нормируются. Общее освещение – это освещение, при котором светильники размещаются в верхней зоне помещения равномерно (общее равномерное освещение) или применительно к расположению оборудования (общее локализованное освещение). В дополнение к общему освещению светильниками, концентрирующими световой поток непосредственно на рабочих местах, создается местное освещение, а также комбинированное освещение, при котором к общему освещению добавляется местное. Совмещенное освещение – это освещение, при котором недостаточное по нормам естественное освещение дополняется искусственным. Гигиенические требования к освещению Гигиенические требования к освещению основаны на особенностях восприятия света и его воздействия на человека и сводятся к следующему: – спектральный состав света должен приближаться к естественному; – уровень освещенности должен соответствовать нормативным показателям, учитывающим условия работы; – также необходимы равномерность и устойчивость уровня освещенности, отсутствие блескости, создаваемой источником или предметами в зоне работы. Производственные здания и рабочие площадки предприятий освещаются естественным светом небосвода (прямым и отраженным) и искусственным светом от электроламп, а также совмещенным. Естественное освещение осуществляется через боковые проемы наружных степ и аэрационные фонари. Главным недостатком естественного освещения является его изменение в широких пределах в зависимости от времени дня, года и метеорологических факторов (облачности) и отражающих свойств земного покрова. Поэтому в качестве нормируемой характеристики принята относительная величина – коэффициент естественной освещенности (КЕО), равный отношению освещенности в фиксируемой поверхности внутри помещения к одновременной горизонтальной освещенности снаружи, создаваемой диффузионным светом открытого небосвода; определяется в процентах освещенности: е = (Евн/Енар)×100%, где Ет – освещенность в фиксированной точке внутри помещения, лк; Е – освещенность снаружи помещения, лк. Выбор коэффициента естественной освещенности в нормативных документах зависит от характера зрительной работы, пояса светового климата, устойчивости светового покрова. Нормированные значения КЕО при искусственном и естественном освещении рабочих поверхностей выбираются по СНиП 23-05-95 "Естественное и искусственное освещение". Оценка достаточности естественного освещения в помещениях может быть выполнена по значениям КЕО в проектной документации. При отсутствии на строительных чертежах значений КЕО или отсутствии проектной документации определение значений КЕО производится путем инструментальных измерений. Показатели качества световой среды К показателям качества световой среды относятся: показатель ослепленности; отраженная блескость; яркость; коэффициент пульсации освещенности. Показателем ослепленности оценивается слепящее действие, возникающее от прямой блесткости источников света. Для оценки освещения жилых и общественных помещений в качестве показателя, регламентирующего ограничения слепящего действия в осветительных установках, применяется показатель дискомфорта. Этот показатель не регламентируется для помещений, длина которых не превышает двойной высоты установки светильников над полом. Ввиду отсутствия приборов для измерения показателя ослепленности при обследовании освещения рабочего места предварительная оценка слепящего действия осветительных установок производится визуально. При обнаружении фактов явного нарушения требований к устройству осветительных установок (наличие в поле зрения работающих источников света, не перекрытых отражателями, рассеивателями из молочного стекла, затенителями), при жалобах работников на повышенную яркость должно быть зафиксировано значение показателя ослепленности, превышающее нормативное. В остальных случаях значение показателя ослепленности определяется расчетным путем по специальной методике. Отраженная блескость – это характеристика отражения светового потока от рабочей поверхности в направлении глаз работающего, определяющая снижение видимости вследствие чрезмерного увеличения яркости рабочей поверхности и вуалирующего действия, снижающего контраст между объектом и фоном. Отраженная блескость определяется при работе с объектами различения и рабочими поверхностями, обладающими направленно-рассеянным и смешанным отражением (металлы, пластмассы, стекло, глянцевая бумага и т.п.). Контроль отраженной блескости проводится субъективно при наличии слепящего действия бликов отражения, ухудшения видимости объектов различения и жалоб работников на дискомфорт зрения. Контроль яркости производится в тех случаях, когда в нормативных документах имеется указание на необходимость ее ограничения (например, ограничение яркости светлых рабочих поверхностей при местном освещении; ограничение яркости светящихся поверхностей, находящихся в поле зрения работника, в частности при контроле качества изделий в проходящем свете, и т.п.). Яркость рабочей поверхности может быть измерена яркомером в соответствии с ГОСТ 26824–86. На рабочих местах, оборудованных ЭВМ, проводят определение неравномерности распределения яркости – соотношения яркостей между рабочими поверхностями (стол, документ), а также между рабочей поверхностью и поверхностью стен, оборудования. Коэффициентом пульсации освещенности оценивается относительная глубина колебаний освещенности в результате изменения во времени светового потока газоразрядных ламп при питании их переменным током. Максимально допустимая величина коэффициента пульсации регламентируется отраслевыми (ведомственными) нормами. Например, СанПиН 2.2.2/2.4.1340-03 "Гигиенические требования к персональным электронно-вычислительным машинам и организации работы" установлен норматив на коэффициент пульсации освещения на рабочих местах с ЭВМ, равный 5%. При отсутствии таких норм величина коэффициента пульсации определяется по СНиП 23-05-95 "Естественное и искусственное освещение" в зависимости от разряда выполняемых зрительных работ. При контроле величины коэффициента пульсации освещенности особое внимание должно быть уделено тем рабочим местам, где в поле зрения работающего имеются движущиеся или вращающиеся предметы, т.е. возможно появление стробоскопического эффекта [1]. Для таких рабочих мест несоблюдение регламентированного значения коэффициента пульсации недопустимо, так как стробоскопический эффект может служить причиной тяжелейших несчастных случаев. С целью уменьшения коэффициента пульсации освещенности в помещениях необходимо включение соседних ламп в три фазы питающего напряжения или включение их в сеть с электронными пускорегулирующими аппаратами. Источники света Наиболее распространенными источниками света являются газоразрядные лампы и лампы накаливания. Газоразрядные лампы предпочтительнее для применения в системах искусственного освещения. Они имеют высокую световую отдачу и большой срок службы. Световой поток от газоразрядных ламп по спектральному составу близок к естественному освещению и поэтому более благоприятен для зрения. Однако газоразрядные лампы имеют существенные недостатки, к числу которых относится пульсация светового потока. В системах производственного освещения применяют люминесцентные газоразрядные лампы. Различают несколько типов люминесцентных ламп: дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛДЦ), холодного белого (ЛХБ), теплого белого (ЛТБ) и белого света (ЛБ). Кроме люминесцентных газоразрядных ламп (низкого давления), в производственном освещении применяют газоразрядные лампы высокого давления, например галогенные лампы ДРИ (дуговые ртутные с йодидами). Для освещения производственных помещений также применяю лампы накаливания, в которых свечение возникает путем нагревания нити накала до высоких температур. Такие лампы просты и надежны в эксплуатации. К числу их недостатков относятся низкая световая отдача, ограниченный срок службы, преобладание излучения в желто-красной части спектра, что искажает цветовое восприятие. Все большее распространение получают лампы накаливания с йодным циклом – галоидные лампы, которые имеют лучший спектральный состав света и хорошие экономические характеристики. Качественные показатели освещения в производственных помещениях во многом определяются правильным выбором светильников, представляющих собой совокупность источника света и осветительной арматуры. Основное назначение светильников заключается в перераспределении светового потока источников света в требуемых для освещения направлениях, механическом креплении источников света и подводе к ним электроэнергии, а также защите ламп, оптических и электрических элементов от воздействия окружающей среды. По способу защиты от действия окружающей среды различают светильники: – открытые – лампа не отделена от внешней среды; – защищенные – лампа отделена от внешней среды оболочкой, допускающей свободный проход воздуха; – закрытые – оболочка защищает от проникновения крупной пыли; – пыленепроницаемые – оболочка не допускает проникновения внутрь светильника тонкой пыли; – влагозащищенные – корпус и патрон противостоят проникновению внутрь влаги; – взрывозащищенные – с повышенной надежностью против взрыва и т.п. В последнее время активное распространение получают энергосберегающие лампы – электрические лампы, обладающие большой светоотдачей (соотношением между световым потоком и потребляемой мощностью), что способствует экономии электроэнергии. В быту под энергосберегающими лампами чаще всего имеются в виду компактные люминесцентные лампы (КЛЛ) – люминесцентные лампы, имеющие меньшие размеры по сравнению с колбчатой лампой и меньшую чувствительность к механическим повреждениям. КЛЛ часто называют энергосберегающими лампами, что не совсем точно, поскольку существуют энергосберегающие лампы на других физических принципах, например светодиодные лампы. В сравнении с обычными лампами накаливания светодиоды обладают иными преимуществами: длительным сроком службы (в 30 раз больше, чем у ламп накаливания), безопасностью использования, малыми размерами, отсутствием ультрафиолетового излучения и малым инфракрасным излучением, незначительным тепловыделением и др. Основным недостатком светодиодов является их высокая стоимость. Кроме того, при питании пульсирующим током промышленной частоты они мерцают сильнее, чем лампа накаливании. Светодиодное освещение – одно из перспективных направлений технологий искусственного освещения. Развитие светодиодного освещения непосредственно связано с технологической эволюцией светодиода. В частности, разработаны так называемые сверхяркие светодиоды, специально предназначенные для искусственного освещения. Воздействие электрического тока на организм человека Электрический ток бесшумен, не имеет запаха и цвета; человек не способен обнаружить его до начала действия – это и является основной причиной опасности поражения электрическим током, которая усугубляется еще и тем, что пострадавший не может оказать себе помощь. Более того, при неумелом оказании помощи может пострадать и тот, кто пытается помочь. Проходя через тело человека, электрический ток оказывает на него сложное воздействие: термическое (нагрев тканей), биологическое (возбуждение нервных волокон и других тканей организма), электролитическое (разложение крови), механическое, световое. Все поражения электрическим током можно свести к двум видам: местным электротравмам и электрическим ударам. Местные электротравмы – это выраженные местные повреждения тканей организма, вызванные действием электрического тока или электрической дуги. Среди них различают: – электрический ожог – результат теплового воздействия электротока в месте контакта (как правило, I или II степени при U < 1 кВ и III степени при U > 1 кВ); – электрический знак – поражение электрическим током кожи в виде мозоли с углублением; – металлизация кожи – попадание в кожу расплавившегося под действием электрической дуги металла; – электроофтальмия – воспаление наружных оболочек глаз под действием ультрафиолетовых лучей электрической дуги (наблюдается у электросварщиков при плохой защите глаз, у операторов электродуговых печей). Электрический удар – это очень серьезное поражение организма человека, вызванное возбуждением внутренних тканей электрическим током, сопровождающееся судорожным сокращением мышц. Различают электрические удары четырех степеней:
По истечении клинической смерти (для здорового человека 4–8 минут) наступает биологическая смерть, характеризующаяся прекращением биологических процессов в клетках и тканях организма и распадом белковых структур. Основные факторы, влияющие на исход воздействия токаСтепень поражения организма человека зависит от ряда факторов, главным образом от величины силы тока и длительности его прохождения через тело, электрического сопротивления тела человека, а также рода и частоты тока, состояния организма и условий внешней среды. Электрическое сопротивление тела человека и напряжение влияют на исход поражения, поскольку они определяют значение силы тока, проходящего через тело человека. Электрическое сопротивление тела человека складывается из сопротивлений кожи и внутренних тканей. Наружный слой кожи – эпидермис – обладает значительно бо́льшим сопротивлением по сравнению с остальными органами и тканями человека. Сопротивление сухой чистой и неповрежденной кожи человека достигает 100 кОм и более. Если кожа в месте контакта влажная или верхний ее слой поврежден, то сопротивление организма резко снижается – до 0,800–1,00 кОм. Сила тока, проходящего через тело человека, является основным фактором, обусловливающим исход поражения: чем больше сила тока, тем опаснее его действие. Установлены три критерия, характеризующие действие электрического тока на человека. Характеристики этих критериев при протекании тока по пути "рука – рука" или "рука – нога" приведены в табл. 5.2. Таблица 5.2 Критерии воздействия электрического тока
Переменный ток силой 25–50 мА, воздействуя на мышцы грудной клетки, при длительном протекании может вызвать прекращение дыхания и смерть от удушья. Приведенные значения силы тока зависят от индивидуальных свойств человека, его физического развития, состояния нервной системы. Неопасным считается ток менее 0,1 мА. С увеличением длительности протекания тока через тело человека возрастает вероятность тяжелого или смертельного исхода: резко падает сопротивление кожи, более вероятно поражение сердца, накапливаются другие отрицательные последствия. Путь тока в теле пострадавшего имеет существенное значение. Если он проходит через жизненно важные органы: сердце, легкие, головной мозг, то опасность велика. Статистика несчастных случаев показывает, что доля терявших сознание во время воздействия тока по пути "правая рука – ноги" составляет 87%, а по пути "нога – нога" – только 15%. Род и частота тока, проходящего через человека, оказывают большое влияние на исход поражения. Постоянный ток в четыре – пять раз безопаснее переменного частотой 50 Гц той же величины. При напряжении до 300 В более опасен переменный ток, при бо́льших напряжениях – постоянный. С увеличением частоты переменного тока уменьшается сопротивление тела, следовательно, возрастает сила тока, проходящего через тело пострадавшего. Наибольшую опасность представляет переменный ток частотой 20–100 Гц. При частоте тока /> 100 Гц опасность поражения несколько снижается, а при частоте тока/> 1 кГц снижение ее значительно. Токи частотой свыше 500 кГц не вызывают электрического удара, но могут вызвать термические ожоги. Индивидуальные свойства человека и состояние окружающей среды играют заметную роль в исходе поражения. Повышенной восприимчивостью к электрическому току обладают люди, страдающие заболеваниями кожи, сердечнососудистой системы, легких, нервными заболеваниями и др., поэтому к обслуживанию электроустановок допускаются лица, прошедшие специальный медицинский осмотр. Повышенные влажность и температура, загрязнение воздуха токопроводящей пылью увеличивают опасность поражения электрическим током. Меры защиты от поражения электрическим током Электробезопасность (по ГОСТ 12.1.009–76 "ССБТ. Электробезопасность. Термины и определения") обеспечивается организационными и техническими мероприятиями, конструкцией электроустановок, применением технических методов, средств защиты. Организационные меры защиты. Применение защитных мер регламентируется нормативными документами по электробезопасности: Правилами устройства электроустановок (ПУЭ), утвержденными приказом Минэнерго России от 8 июля 2002 г. № 204; Межотраслевыми правилами по охране труда при эксплуатации электроустановок (ПОТ Р М-016-01), утвержденными постановлением Минтруда России от 5 января 2001 г. № 3; Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП9-2003), утвержденными приказом Минэнерго России от 12 января 2003 г. № 6. Электроустановками называются машины, в которых производится, преобразуется, распределяется и потребляется электроэнергия. Меры защиты должны соответствовать виду электроустановки и условиям применения электрооборудования, обеспечивая достаточную безопасность. Опасность поражения в электроустановках и его тяжесть зависят от номинального напряжения. Согласно ПУЭ электроустановки подразделяются на (а) работающие под напряжением более 1 кВ с глухозаземленной нейтралью (чаще используются сети напряжением U = 110 : 750 кВ) и с изолированной нейтралью (6, 10, 20, 35 кВ) и (б) работающие под напряжением менее 1 кВ с глухозаземленной и с изолированной нейтралью. Электрические сети напряжением до 1 кВ выполняются, как правило, трехфазными: 660, 380 и 220 В. Чаще применяют четырехпроводные сети напряжением 380/220 В. В ряде производств недопустимо использование сетей с глухозаземленной нейтралью. Силовые электроустановки напряжением 660, 380, 220 В, работающие с изолированной нейтралью, имеют меньшую опасность при однофазном прикосновении ввиду большого сопротивления изоляции проводов. Классификация помещений. Безопасность при эксплуатации электроустановок существенно зависит от повышенной влажности и температуры воздуха, запыленности и загазованности помещений. Согласно ПУЭ все помещения по опасности поражения током делят на три категории: 1) помещения без повышенной опасности; 2) помещения с повышенной опасностью; 3) особо опасные помещения. При этом выделяют следующие признаки повышенной опасности: – наличие токопроводящих полов – металлических, железобетонных, кирпичных и т.п.; – сырость помещений при относительной влажности воздуха > 75%; – высокая температура воздуха (t > 35 °С); – токопроводящая пыль (металлическая, угольная и др.). Пыльными считаются помещения, в которых по условиям производства выделяется технологическая пыль в таком количестве, что она проникает внутрь машин и оборудования; – возможность одновременного прикосновения человека к заземленной металлоконструкции и к металлическому корпусу электроустановки; – коэффициент заполнения помещения электрооборудованием > 0,2. Признаки особой опасности: – особая сырость (ф ≈ 100% – стены, пол и потолок покрыты влагой); – наличие химически активной среды (агрессивные пары, газы, жидкости). Классификация обслуживающего персонала по электробезопасности. Существует пять квалификационных групп по охране труда, зависящих от типа электроустановок и рода работы. Для эксплуатации ручного электрооборудования достаточна первая квалификационная группа. Для управления электрооборудованием с напряжением U менее 1000 В необходима квалификация персонала не ниже второй группы, для работы на электроустановках с U более 1000 В – не ниже третьей. Способы и меры защиты от поражения электрическим током. Технические способы и средства защиты приведены в ГОСТ 12.1.019–79 "Электробезопасность. Общие требования". Для обеспечения электробезопасности должны применяться отдельно или в сочетании друг с другом следующие технические способы и средства: защитное заземление; зануление; выравнивание потенциалов; электрическое разделение сетей; защитное отключение; изоляция токоведущих частей (рабочая, дополнительная, усиленная, двойная); оградительные устройства; предупредительная сигнализация, блокировка; знаки безопасности; средства защиты и предохранительные приспособления. Защита от прикосновения или опасного приближения к токоведущим частям достигается дополнительной или усиленной изоляцией токоведущих частей; расположением токоведущих частей на недоступной высоте или в недоступном месте; использованием ограждений: сплошных в виде кожухов и крышек (в электроустановках U < 1 кВ) и сетчатых; применением блокировок, предупредительной сигнализации, знаков безопасности. По принципу действия блокировки делятся на механические и электрические. Например, в аппаратуре автоматики и ЭВМ применяют штепсельное соединение отдельных блоков, т.е. механическую блокировку. Электрическая блокировка осуществляет отключение электроустановки при открытии дверей, ограждений, крышек кожухов. Малое напряжение и электрическое разделение сетей используют для повышения безопасности при работе в основном с ручным электрифицированным инструментом. Малое напряжение – это номинальное напряжение ≤ 42 В, применяемое в целях уменьшения опасности поражения электрическим током. Наибольшая степень безопасности достигается при напряжении до 10 В (сила тока при случайном прикосновении Ih = 10/1000 = 0,01 А). Источники малого напряжения: батареи, аккумуляторы, трансформаторы – должны быть максимально приближены к потребителю. Для ручного электроинструмента и местного освещения в помещениях с повышенной опасностью и особо опасных помещениях используют напряжение 12, 36, 42 В. Электрическое разделение сетей: разветвленная сеть большой протяженности имеет значительную емкость и небольшое активное сопротивление изоляции относительно земли; ток замыкания на землю в такой сети может достигать значительной величины, поэтому однофазное прикосновение в сети является опасным. Опасность поражения резко снизится, если единую сильно разветвленную сеть с большой емкостью и малым сопротивлением разделить на ряд небольших сетей с незначительной емкостью и высоким сопротивлением изоляции с помощью специальных разделяющих трансформаторов. Защитное заземление, зануление и защитное отключение являются наиболее распространенными техническими средствами для защиты персонала при прикосновении к токоведущим частям электрооборудования, которые могут оказаться под напряжением из-за повреждения изоляции. Защитное заземление или зануление выполняют: а) во всех случаях при номинальном переменном напряжении ≥ 380 В и постоянном напряжении ≥ 440 В; б) в помещениях с повышенной опасностью и особо опасных при номинальном переменном U = 42 : 380 В и постоянном U= 110 -5- 440 В. Таким образом, электроустановки, работающие иод напряжением до 42 В переменного и до 110 В постоянного тока, не требуют защитного заземления и зануления, за исключением некоторых случаев, оговоренных в ПУЭ. Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Принцип действия защитного заземления состоит в снижении до безопасных значений напряжения прикосновения и силы тока, проходящего через человека, обусловленных замыканием на корпус (рис. 5.3). При заземлении корпуса происходит замыкание на землю; прикосновение к заземленному корпусу вызывает появление параллельной ветви, по которой часть тока замыкания проходит на землю через тело человека. Сила тока в параллельных цепях обратно пропорциональна сопротивлениям цепей, поэтому ток, проходящий через тело человека Ih, безопасен. Рис. 5.3. Принципиальная схема защитного заземления Область применения защитного заземления – трехфазные сети напряжением до 1 кВ с изолированной нейтралью и сети напряжением более 1 кВ как с изолированной, так и с заземленной нейтралью. Заземляющее устройство состоит из заземлителя (одного или нескольких металлических элементов, погруженных на определенную глубину в грунт) и проводников, которые соединяют заземляемое оборудование с заземлителем. В зависимости от расположения заземлителей относительно оборудования заземляющие устройства делятся на выносные и контурные. Выносное устройство располагается на некотором удалении от оборудования. Преимуществом такого типа заземляющего устройства является возможность выбора места размещения, недостатком – отдаленность заземлителя от защищаемого оборудования. Контурное устройство, заземлители которого расположены по контуру вокруг заземляемого оборудования, обеспечивают лучшую защиту. Основной элемент заземляющего устройства – естественный или искусственный заземлитель. Естественными заземлителями могут быть металлические и железобетонные части коммуникаций и других сооружений, имеющие надежное соединение с землей. Для искусственных заземлителей применяют обычно вертикальные и горизонтальные элементы. В качестве вертикальных элементов используют стальные трубы, уголки, прутки, которые соединяют прочно между собой горизонтальными элементами из полосовой стали. Для заземляющих проводников используют полосовую и круглого сечения сталь. Зануление – это преднамеренное электрическое соединение с нулевым защитным проводником металлических токоведущих частей, которые могут оказаться под напряжением. Это основное средство обеспечения электробезопасности в трехфазных сетях с заземленной нейтралью и U менее 1 кВ (обычно 220/127, 380/220, 660/380 В). В таких сетях уменьшить напряжение на корпусе, контактирующем с токоведущими частями, невозможно, но можно повысить безопасность оборудования, уменьшив длительность замыкания на корпус. В сети с занулением различают (рис. 5.4.): нулевой рабочий проводник HP (для питания током электроприемников) и нулевой защитный проводник НЗ (для зануления). Рис. 5.4. Принципиальная схема зануления в трехфазной сети с нулевым рабочим (HP) и нулевым защитным (НЗ) проводниками: 1 и 2 – корпусы одно- и трехфазного приемников тока; 3 – плавкие предохранители, Iк – ток однофазного короткого замыкания, Uф – фазное напряжение Зануление превращает замыкание на корпус в однофазное короткое замыкание, возникает ток большой величины, в результате чего срабатывает максимальная токовая защита, которая селективно отключает поврежденный участок. Для того чтобы быстро отключить аварийный участок, ток короткого замыкания, согласно ПУЭ, должен не менее чем в три раза превышать номинальный ток через плавкую вставку или в 1,25–1,4 раза номинальный ток автоматического выключателя. Расчет зануления заключается в определении сечения нулевого провода, удовлетворяющего условию срабатывания максимальной токовой защиты. Если запуленный корпус одновременно заземлен, то это улучшает условия безопасности, так как обеспечивает дополнительное заземление нулевого защитного (НЗ) провода. Защитное отключение – это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током. Подобная опасность возникает при повреждениях установки, таких как замыкание на землю; снижение сопротивления изоляции; неисправности заземления, зануления или устройства защитного отключения. Повреждение установки приводит к изменениям некоторых величин, которые можно использовать как входные величины автоматического устройства, осуществляющего защитное отключение. Например, напряжение корпуса относительно земли, напряжение нулевой последовательности (несимметрия напряжения фаз относительно земли), ток замыкания на землю, ток нулевой последовательности и другие параметры могут быть восприняты датчиком автоматического устройства как входная величина (время срабатывания менее 0,2 с). Защитное отключение можно использовать в качестве единственной или основной меры защиты совместно с дополнительным заземлением или занулением или в дополнение к заземлению или занулению. Электрозащитные средства применяются для защиты людей, работающих с электроустановками, от поражения электрическим током, воздействия электрической дуги и электромагнитного поля. По характеру применения электрозащитные средства подразделяются на две категории: средства коллективной и средства индивидуальной защиты. Электрозащитные средства могут быть основными и дополнительными. Основными являются средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановки и которые позволяют прикасаться к токоведущим частям, находящимся под напряжением. Средства защиты, которые сами по себе не могут при данном напряжении обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами, служат дополнительными средствами. Если вы дошли до сюда, поставьте 5 пожалуйста))))) Э то вам |