Главная страница
Навигация по странице:

  • Деление твердых тел на проводники, полупроводники и диэлектрики: Проводники

  • Полупроводники и диэлектрики

  • Полупроводниковые материалы

  • Примесная проводимость полупроводников

  • Полупроводниковые приборы, ПП

  • Контактная разность потенциалов

  • Термоэлектро́нная эми́ссия (эффект Ричардсона , эффект Эдисона

  • Зако́н электромагни́тной инду́кции Фараде́я

  • Вырожденный газ


    Скачать 86.97 Kb.
    НазваниеВырожденный газ
    Дата27.12.2018
    Размер86.97 Kb.
    Формат файлаdocx
    Имя файла23-33.docx
    ТипДокументы
    #62087


    23.

    Вырожденный газ — газ, на свойства которого существенно влияют квантовомеханические эффекты, возникающие вследствие тождественности его частиц. Вырождение наступает в условиях, когда расстояния между частицами газа становятся соизмеримыми с длиной волны де Бройля; в зависимости от спина частиц выделяются два типа вырожденных газов - ферми-газ, образованный фермионами (частицами с полуцелым спином) и бозе-газ, образованный бозонами (частицами с целым спином).

    Деление твердых тел на проводники, полупроводники и диэлектрики:
    Проводники. В первую группу входят тела, в энергетическом спектре которых над целиком заполненными зонами располагается зона, заполненная частично (рис. 10, а). Как мы видели, частичное заполнение зон наблюдается у щелочных металлов, у которых верхняя зона образуется из незаполненных атомных уровней, а также у кристаллов щелочноземельных элементов, верхняя зона которых благодаря перекрытию заполненных и пустых зон является гибридной. Все тела, входящие в первую группу, являются проводниками.

    Полупроводники и диэлектрики. Во вторую группу объединяются тела, у которых над целиком заполненными зонами располагаются совершенно пустые зоны (рис. 10, б, в). В эту группу входят и кристаллы, имеющие структуру алмаза, такие, как кремний, германий, серое олово, собственно алмаз и др. К этой группе относятся и многие химические соединения - окислы металлов, карбиды, нитриды металлов, корунд (Аl2O3) и др. Вторая группа твердых тел объединяет полупроводники и диэлектрики. Самая верхняя заполненная зона в группе этих кристаллов называется валентной зоной, а находящаяся над ней первая пустая зона - зоной проводимости. Самый верхний уровень валентной зоны называется потолком валентной зоны и обозначается http://rateli.ru/books/item/f00/s00/z0000011/pic/000034.jpg (индекс υ происходит от английского слова valency - валентность). Самый нижний уровень зоны проводимости называется дном зоны проводимости и обозначается Wc (индекс с происходит от английского слова conductivity - проводимость).

    Принципиальной разницы между полупроводниками и диэлектриками нет. Деление их в пределах второй группы довольно условно и определяется шириной зоны запрещенных энергий Wg, отделяющей целиком заполненную зону от пустой. Тела, имеющие ширину запрещенной зоны http://rateli.ru/books/item/f00/s00/z0000011/pic/000035.jpg эВ, относят в подгруппу полупроводников. Типичными представителями их являются германий http://rateli.ru/books/item/f00/s00/z0000011/pic/000036.jpg кремний http://rateli.ru/books/item/f00/s00/z0000011/pic/000037.jpg арсенид галлия http://rateli.ru/books/item/f00/s00/z0000011/pic/000038.jpg антимонид индия InSb (Wg ≈ 0,2 эВ).

    24.

    Электропроводность металлов

    Металлы имеют свойство проводить ток. Это обусловлено тем, что электромагнитное поле воздействует на проводниковый металл, в следствие чего электрон ускоряется настолько, что теряет связь с атомом.

    Электронная теория проводимости металлов создана П. Друде в 1900 г., которая далее получила развитие в работах Г. Лоренца. С точки зрения данной теории высокая электропроводность металлов обусловлена наличием очень большого числа носителей заряда – электронов проводимости, перемещающихся по всему объему проводника. При своем движении электроны проводимости сталкиваются с ионами кристаллической решетки металла. Следуя из этого средняя длина свободного пробега электронов равна 10-8 см. [1]

    25

    Полупроводниковые материалы — вещества с чётко выраженными свойствами полупроводника, включая комнатную (

    300 Кполупроводниковых приборовУдельная электрическая проводимость σ при 300 К составляет 10−4−1010 Ом−1·см−1 и увеличивается с ростом температуры. Для полупроводниковых материалов характерна высокая чувствительность электрофизических свойств к внешним воздействиям (нагрев, облучение, деформации и т. п.), а также к содержанию структурных дефектов и примесей.

    26.

    Полупроводники представляют собой вещества, которые по своей удельной электрической проводимости занимают среднее место между проводниками и диэлектриками.

    Для полупроводников характерен отрицательный температурный коэффициент электрического сопротивления. При возрастании температуры сопротивление полупроводников уменьшается, а не увеличивается, как у большинства твердых проводников. Кроме того, электрическое сопротивление полупроводников очень сильно зависит от количества примесей, а также от таких внешних воздействий, как свет, электрическое поле, ионизирующее излучение и др.

    В полупроводниках существует электропроводность двух видов. Так же как и металлы, полупроводники обладают электронной электропроводностью, которая обусловлена перемещением электронов проводимости. При обычных рабочих температурах в полупроводниках всегда имеются электроны проводимости, которые очень слабо связаны с ядрами атомов и совершают беспорядочное тепловое движение между атомами кристаллической решетки. Эти электроны под действием разности потенциалов могут получить дополнительное движение в определенном направлении, которое и является электрическим током.

    Полупроводники обладают также дырочной электропроводностью, которая не наблюдается в металлах. В полупроводниках кристаллическая решетка достаточно прочна. Ее ионы, т. е. атомы, лишенные одного электрона, не передвигаются, а остаются на своих местах.

    Отсутствие электрона в атоме условно назвали дыркой. Этим подчеркивают, что в атоме не хватает одного электрона, т. е. образовалось свободное место. Дырки ведут себя как элементарные положительные заряды.

    При дырочной электропроводности в действительности тоже перемещаются электроны, но более ограниченно, чем при электронной электропроводности. Электроны переходят из данных атомов только в соседние. Результатом этого является перемещение положительных зарядов – дырок – в направлении, противоположном движению электронов.

    Электроны и дырки, которые могут перемещаться и поэтому создавать электропроводность, называют подвижными носителями заряда или просто носителями заряда. Принято говорить, что под действием теплоты происходит генерация пар носителей заряда, т. е. возникают пары: электрон проводимости – дырка проводимости.

    Вследствие того что электроны и дырки проводимости совершают хаотическое тепловое движение, обязательно происходит и процесс, обратный генерации пар носителей. Электроны проводимости снова занимают свободные места в валентной зоне, т. е. объединяются с дырками. Такое исчезновение пар носителей называется рекомбинацией носителей заряда. Процессы генерации и рекомбинации пар носителей всегда происходят одновременно.

    Полупроводник без примесей называют собственным полупроводником. Он обладает собственной электропроводностью, которая складывается из электронной и дырочной электропроводности. При этом, несмотря на то что количество электронов и дырок проводимости в собственном полупроводнике одинаково, электронная электропроводность преобладает, что объясняется большей подвижностью электронов по сравнению с подвижностью дырок.

    Примесная проводимость полупроводников — электрическая проводимость, обусловленная наличием в полупроводнике донорных или акцепторных примесей.

    Примесная проводимость, как правило, намного превышает собственную, и поэтому электрические свойства полупроводников определяются типом и количеством введенных в него легирующих примесей.

    Собственная проводимость полупроводников обычно невелика, так как число свободных электронов, например, в германии при комнатной температуре порядка 3·1013 / см3. В то же время число атомов германия в 1 см3  1023. Проводимость полупроводников увеличивается с введением примесей, когда наряду с собственной проводимостью возникает дополнительная примесная проводимость.

    27

    Полупроводниковые приборы, ПП — широкий класс электронных приборов, изготавливаемых из полупроводников.

    К полупроводниковым приборам относятся:

    • Интегральные схемы (микросхемы)

    • Полупроводниковые диоды (в том числе варикапы, стабилитроны, диоды Шоттки),

    • Тиристоры, фототиристоры,

    • Транзисторы,

    • Приборы с зарядовой связью,

    • Полупроводниковые СВЧ-приборы (диоды Ганна, лавинно-пролетные диоды),

    • Оптоэлектронные приборы (фоторезисторы, фотодиоды, фототранзисторы, солнечные элементы, детекторы ядерных излучений, светодиоды, полупроводниковые лазеры, электролюминесцентные излучатели),

    • Терморезисторы, датчики Холла.

    c:\users\vadim\desktop\337.ht34.gif

    28

    Контактная разность потенциалов (в англоязычной литературе - потенциал Вольты) — это разность потенциалов, возникающая при соприкосновении двух различных твердых проводников, имеющих одинаковую температуру. Различают внутреннюю и внешнюю разности потенциалов в зависимости от того, рассматриваются ли потенциалы эквипотенциального объема контактирующих проводников или же потенциалы вблизи их поверхности[1].

    Контактная разность потенциалов не может быть измерена вольтметром напрямую, однако может проявляться на вольт-амперных характеристиках контакта. Примером устройства, где внешняя контактная разность потенциалов двух металлов влияет на ВАХ, может служить ламповый диод. Внутренняя контактная разность потенциалов лежит в основе работы таких полупроводниковых приборов, как диод на p-n переходе, диод с контактом металл-полупроводник, транзистор, а также ряда других.

    29.

    Термоэлектро́нная эми́ссия (эффект Ричардсонаэффект Эдисона) — явление выбивания электронов из металла при высокой температуре. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растёт, и явление термоэлектронной эмиссии становится заметным.

    Исследование закономерностей термоэлектронной эмиссии можно провести с помощью простейшей двухэлектродной лампы — вакуумного диода, представляющего собой откачанный баллон, содержащий два электрода: катод К и анод А. В простейшем случае катодом служит нить из тугоплавкого металла (например, вольфрама), накаливаемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод. Если диод включить в цепь, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареи, то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод испускает отрицательные частицы — электроны.

    Если поддерживать температуру накаленного катода постоянной и снять зависимость анодного тока от анодного напряжения — вольт-амперную характеристику, то оказывается, что она не является линейной, то есть для вакуумного диода закон Ома не выполняется. Зависимость термоэлектронного тока от анодного напряжения в области малых положительных значений описывается законом трёх вторых (установлен русским физиком С. А. Богуславским и американским физиком И. Ленгмюром):

    {\displaystyle I=BU^{3/2}},

    где В — коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения.

    30.

    Процесс ионизации заключается в том, что под действием высокой температуры или некоторых лучей молекулы газа теряют электроны, и тем самым превращаются в положительные ионы.

    Таким образом, в результате происходит освобождение электронов из атомов и молекул, которые могут присоединиться к нейтральным молекулам или атомам, превращая их в отрицательные ионы. Ионы и свободные электроны делают газ проводником электричества.

    Ионизация газа может происходить под действием коротковолнового излучения – ультрафиолетовых, рентгеновских и гамма-лучей, а также альфа-, бета- и космических лучей.

    Рекомбинация – это нейтрализация при встрече разноименных ионов или воссоединение иона и электрона в нейтральную молекулу (атом).

    Факторы, под действием которых возникает ионизация в газе, называют внешними ионизаторами, а возникающая при этом проводимость называется несамостоятельной проводимостью.

    При данной мощности внешнего ионизатора в объёме газа устанавливаетсяравновесное состояние, при котором число пар ионов, возникающих под действием ионизатора за одну секунду в единице объёма, равно числу пар рекомбинировавших ионов. При этом скорость ионизации равна скорости рекомбинации.

    30.2

    Несамостоятельный разряд


    С помощью некоторого ионизатора в газе в каждую единицу времени образуется определенное число заряженных частиц: положительных ионов и электронов. При небольшой разности потенциалов между электродами, в трубке возникнет электрический ток. 

    Положительно заряженные ионы начнут двигаться к положительно заряженному электрону, а отрицательно заряженные ионы и электроны – к положительно заряженному электроду. Так как возникает электрический ток, следовательно, возникает и газовый разряд.

    Мы уже знаем, что не все ионы будут достигать электродов, некоторые из них будут рекомбинироваться, то есть образовывать в результате соединения нейтральные молекулы. Чем сильнее будет разность потенциалов, тем большее количество ионов будет достигать электродов, и тем меньшее количество ионов будут рекомбинироваться.

    При этом будет возрастать сила тока в цепи. С течение времени наступит момент насыщения, когда все появляющиеся ионы будут достигать электродов. Дальнейший рост силы тока становится невозможным.

    рисунок

    Если в этом опыте прекратить в любой момент действие ионизатора, то ток тоже прекратится, так как он зависит от ионизатора. По этой причине данный вид разряда называют несамостоятельным разрядом.

    Самостоятельный разряд


    Попробуем теперь продолжать увеличивать напряжение. По идее сила тока не должна увеличиваться. Но в газах в таком случае, начиная с некоторого момента, сила тока снова увеличится.

    рисунок

    Следовательно, в газе появились какие-то новые проводники тока, которые образуются помимо тех, что появляются под действием ионизатора. Увеличение силы тока может быть очень большим, а число ионов, которые будут возникать в процессе разряда, может стать таким большим, что действие внешнего ионизатора больше не потребуется.

    В этом случае, если убрать внешний ионизатор, то заряд не прекратится, так как он больше не будет зависеть от ионизатора. Такой разряд называют самостоятельным газовым разрядом.

    31.

    Тлеющий разряд


    Видно, что вблизи катода в области в происходит резкое падение катодного потенциала. Это является наиболее характерным признаком для тлеющего разряда.

    Тлеющий разряд применяется в различных трубках, изготовленных для рекламы. В зависимости от наполнителя, они будут светиться различными цветами. А наиболее важной областью применения тлеющего разряда являются газовые лазеры.

    Коронный разряд


    Коронный разряд возникает в газе при атмосферном давлении. При этом газ должен находиться в неоднородном поле. По форме он часто напоминает корону. Появляется близи остриев различных предметов, проводов линий высокого напряжения.

    Чем больше будет кривизна проводника, тем выше будет плотность заряда. На острие будет наблюдаться максимальная плотность заряда.
    При увеличении напряжения коронный заряд может принять вид светящейся кисти, в таких случаях его еще называют кистевым разрядом.

    В технике приходится часто учитывать это явление, если идет речь о высоком напряжении. Если будут выступающие части или тонкие провода, то может начаться коронный разряд. Поэтому при проектировке высоковольтных линий следует использовать толстые провода, и чем больше напряжение, тем толще провод.

    Искровой разряд


    Искровой разряд появляется при атмосферном давлении вследствие пробоя слоя воздуха между электродами, при подаче на них очень высокого напряжения.

    При искровом разряде в газе возникают стриммеры. Стриммеры – это каналы ионизированного газа, имеющие вид прерывистых зигзагообразных ярких нитей. При этом наблюдается свечение газа и выделения большого количества теплоты. Газ начинает расширяться, и расширяясь, газ будет излучать звуковые волны.

    После пробоя газа, напряжение на электродах резко падает. Ярким примером искрового разряда является молния и сопровождающий её гром. В случае молнии электродами выступают либо облака, либо облако и Земля.

    Искровой разряд также как и другие виды самостоятельного газового разряда используется в технике. Например, для зажигания горючего в двигателях внутреннего сгорания или для электроискровой обработки металлов.

    Дуговой разряд


    Возникает в воздухе при атмосферном давлении и невысоких напряжениях. Имеет форму дуги, за что и получил свое название. Электрическая дуга впервые получена русским ученым В.В. Петровым. 

    Основной причиной ионизации газа в этом случае является термоэлектронная эмиссия. Широкое применение наше дуговой разряд в технике. Он используется для сварки метла, а также в электропечах - для плавки металлов.

    32.

    32.1

    Электроли́т — вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит в растворах и расплавах, или движения ионов в кристаллических решётках твёрдых электролитов. Примерами электролитов могут служить кислоты, соли и основания и некоторые кристаллы (например, иодид серебра, диоксид циркония). Электролиты — проводники второго рода, вещества, электропроводность которых обусловлена подвижностью положительно или отрицательно заряженных ионов.

    32.2

    Анион — отрицательно заряженный ион. Характеризуется величиной отрицательного заряда; например, Cl− — однозарядный анион, а SO42− — двухзарядный анион. В электрическом поле анионы перемещаются к положительному электроду — аноду. Анионы имеются в растворах большинства солей, кислот и оснований, а также в кристаллических решетках соединений с ионной связью и в расплавах.

    Катион — положительно заряженный ион. Характеризуется величиной положительного электрического заряда: например, NH4+ — однозарядный катион, Ca2+ — двухзарядный катион.

    32.3

    Электрический ток в жидкостях


     

    Жидкости, как и любые другие вещества, могут быть проводниками, полупроводниками и диэлектриками. Например, дистиллированная вода будет являться диэлектриком, а растворы и расплавы электролитов будут являться проводниками. Полупроводниками будут являться, например, расплавленный селен или расплавы сульфидов.

    Ионная проводимость


    Электролитическая диссоциация - это процесс распадения молекул электролитов на ионы под действием электрического поля полярных молекул воды. Степенью диссоциации называется доля молекул распавшихся на ионы в растворенном веществе.

    Степень диссоциации будет зависеть от различных факторов: температура, концентрация раствора, свойства растворителя. При увеличении температуры, степень диссоциации тоже будет увеличиваться.

    После того как молекулы разделились на ионы, они движутся хаотично. При этом два иона разных знаков могут рекомбинироваться, то есть снова объединиться в нейтральные молекулы. При отсутствии внешних изменений в растворе должно установиться динамическое равновесие. При нем число молекул которое распалось на ионы за единицу времени, будет равняться числу молекул, которые снова объединятся.

    Носителями зарядов в водных растворах и расплавах электролитов будут являться ионы. Если сосуд с раствором или расплавом включить в цепь, то положительно заряженные ионы начнут двигаться к катоду, а отрицательные – к аноду. В результате этого движения возникнет электрический ток. Данный вид проводимости называют ионной проводимостью.

    Помимо ионной проводимости в жидкостях может обладать и электронной проводимостью. Такой тип проводимости свойственен, например, жидким металлам.  Как отмечалось выше, при ионной проводимости прохождение тока связано с переносом вещества.

    Электролиз


    Вещества которые входят в состав электролитов, будут оседать на электродах. Этот процесс называется в электролизом. Электролиз – процесс выделения на электроде вещества, связанный с окислительно-восстановительными реакциями.

    Электролиз нашел широкое применение в физике и технике. С помощью электролиза поверхность одного металла покрывают тонким слоем другого металла. Например, хромирование и никелирование.

    С помощью электролиза можно получить копию с рельефной поверхности. Для этого необходимо, чтобы слой металла, который осядет на поверхности электрода, легко можно было снять. Для этого иногда на поверхность наносят графит.

    Процесс получения таких легко отслаиваемых покрытий получил название гальвано-пластика. Этим метод разработал русский ученый Борис Якоби при изготовлении полых фигур для Исаакиевского собора с Санкт-Петербурге.

    Еще одним способом применения электролиза является получение чистого металла из примесей. С помощью электролиза изготавливают печатные платы для различных цифровых устройств. 

    32.4

    Зако́н электромагни́тной инду́кции Фараде́я является основным законом электродинамики, касающимся принципов работы трансформаторов, дросселей, многих видов электродвигателей и генераторов.[1]Закон гласит:

    Для любого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур, взятой со знаком минус.[1]

    или другими словами:

    Генерируемая ЭДС пропорциональна скорости изменения магнитного потока.

    33.1

    Магнитное взаимодействие токов


    Магнитные явления были известны еще в древнем мире. Компас был изобретен более 4500 лет тому назад. В Европе он появился приблизительно в XII веке новой эры. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле.

    Первыми экспериментами (проведены в 1820 г.), показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Х. Эрстеда. Эти опыты показали, что на магнитную стрелку, расположенную вблизи проводника с током, действуют силы, которые стремятся ее повернуть. В том же году французский физик А. Ампер наблюдал силовое взаимодействие двух проводников с токами и установил закон взаимодействия токов.

    По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля.

    Источниками магнитного поля являются движущиеся электрические заряды (токи). Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).

    Ученые XIX века пытались создать теорию магнитного поля по аналогии с электростатикой, вводя в рассмотрение так называемые магнитные заряды двух знаков (например, северный N и южный S полюса магнитной стрелки). Однако опыт показывает, что изолированных магнитных зарядов не существует.

    Магнитное поле токов принципиально отличается от электрического поля. Магнитное поле, в отличие от электрического, оказывает силовое действие только на движущиеся заряды (токи).

    33.2

    Зако́н Ампе́ра  — закон взаимодействия электрических токов. Впервые был установлен Андре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поледействует на малый отрезок проводника с током. Сила оказывается линейно зависимой как от тока, так и от магнитной индукции {\displaystyle B}BBB BBBBBBBDJKSJDLFASFAs B


    написать администратору сайта