|
Дискредитации. дискретная. Высказывания. Логические операции
Высказывания. Логические операции. Высказывания. Логические операции
Простые и сложные высказывания, логические переменные и логические константы, логическое отрицание, логическое умножение, логическое сложение, таблицы истинности для логических операций
Для автоматизации информационных процессов необходимо уметь не только единообразно представлять информацию различных видов (числовую, текстовую, графическую, звуковую) в виде последовательностей нулей и единиц, но и определять действия, которые можно выполнять над информацией. Выполнение таких действий производится в соответствии с правилами, которым подчиняется процесс мышления. Говоря иначе, в соответствии с законами логики. Термин «логика» образован от древнегреческого слова 1о§08, означающего «мысль, рассуждение, закон». Наука логика изучает законы и формы мышления, способы доказательств.
Для описания рассуждений и правил выполнения действий с информацией используют специальный язык, принятый в математической логике. В основе рассуждений содержатся специальные предложения, называемые высказываниями. В высказываниях всегда что-либо утверждается или отрицается об объектах, их свойствах и отношениях между объектами. Высказыванием является любое суждение, относительно которого можно сказать, истинно оно или ложно. Высказываниями могут быть только повествовательные предложения. Вопросительные или побудительные предложения высказываниями не являются.
Высказывание — суждение, сформулированное в виде повествовательного предложения, о котором можно сказать, истинно оно или ложно.
Например, вопросительные предложения «В каком году было первое летописное упоминание о Москве?» и «Что является внешней памятью компьютера?» или побудительное предложение «Соблюдайте правила техники безопасности в компьютерном классе» высказываниями не являются. Повествовательные предложения «Первое летописное упоминание о Москве было в 1812 г.», «Оперативное запоминающее устройство является внешней памятью компьютера» и «В компьютерном классе не надо соблюдать правила техники безопасности» являются высказываниями, поскольку это суждения, о каждом из которых можно сказать, что оно ложно. Истинными высказываниями будут суждения «Первое летописное упоминание о Москве было в 1147 г.», «Жесткий магнитный диск является внешней памятью компьютера».
Каждому высказыванию соответствует только одно из двух значений: или «истина», или «ложь», которые являются логическими константами. Истинное значение принято обозначать цифрой 1, а ложное значение — цифрой 0. Высказывания можно обозначать с помощью логических переменных, в качестве которых используются заглавные латинские буквы. Логические переменные могут принимать только одно из двух возможных значений: «истина» или «ложь». Например, высказывание «Информация в компьютере кодируется с помощью двух знаков» можно обозначить логической переменной А, а высказывание «Принтер является устройством хранения информации» можно обозначить логической переменной В. Поскольку первое высказывание соответствует действительности, то А = 1. Такая запись означает, что высказывание А истинно. Так как второе высказывание не соответствует действительности, то В = 0. Такая запись означает, что высказывание в ложно.
Высказывания могут быть простыми и сложными. Высказывание называется простым, если никакая его часть не является высказыванием. До сих пор были приведены примеры простых высказываний, которые обозначались логическими перемены ми. Выстраивая цепочку рассуждений, человек с помощью логических операций объединяет простые высказывания в сложнее' высказывания. Чтобы узнать значение сложного высказывания нет необходимости вдумываться в его содержание. Достаточно знать значение простых высказываний, составляющих сложное высказывание, и правила выполнения логических операций.
Логическая операция — действие, позволяющее составлять сложное высказывание из простых высказываний.
Все рассуждения человека, а также работа современных технических устройств основываются на типовых действиях с информацией — трех логических операциях: логическом отрицании (инверсии), логическом умножении (конъюнкции) и логическом сложении (дизъюнкции).
Логическое отрицание простого высказывания получают добавлением слов «Неверно, что» в начале простого высказывания.
■ ПРИМЕР 1. Имеется простое высказывание «Крокодилы умеют летать». Результатом логического отрицания будет высказывание «Неверно, что крокодилы умеют летать». Значение исходного высказывания — «ложь», а значение нового — «истина».
■ ПРИМЕР 2. Имеется простое высказывание «Файл должен иметь имя». Результатом логического отрицания будет высказывание «Неверно, что файл должен иметь имя». Значение исходного высказывания — «истина», а значение нового высказывания — «ложь».
Можно заметить, что логическое отрицание высказывания истинно, когда исходное высказывание ложно, и наоборот, логическое отрицание высказывания ложно, когда исходное высказывание истинно.
Логическое отрицание (инверсия) — логическая операция, ставящая в соответствие простому высказыванию новое высказывание, значение которого противоположно значению исходного высказывания.
Обозначим простое высказывание логической переменной А. Тогда логическое отрицание этого высказывания будем обозначать НЕ А. Запишем все возможные значения логической переменной А и соответствующие результаты логического отрицания НЕ А в виде таблицы, которая называется таблицей истинности для логического отрицания (табл. 40).
ТАБЛИЦА ИСТИННОСТИ ДЛЯ ЛОГИЧЕСКОГО ОТРИЦАНИЯ
Если/1 = 0, то НЕ А = 1 (см. пример 1).
Если А = 1, то НЕ А = 0 (см. пример 2)
|
| Можно заметить, что в таблице истинности для логического отрицания ноль меняется на единицу, а единица меняется на ноль.
Логическое умножение двух простых высказываний получают объединением этих высказываний с помощью союза и. Разберем на примерах 3—6, что будет являться результатом логического умножения.
■ ПРИМЕР 3. Имеются два простых высказывания. Одно высказывание — «Карлсон живет в подвале». Другое высказывание — «Карлсон лечится мороженым».
Результатом логического умножения этих простых высказываний будет сложное высказывание «Карлсон живет в подвале, и Карлсон лечится мороженым». Можно сформулировать новое высказывание более кратко: «Карлсон живет в подвале и лечится мороженым». Оба исходных высказывания ложны. Значение нового сложного высказывания также «ложь».
■ ПРИМЕР 4. Имеются два простых высказывания. Первое высказывание — «Карлсон живет в подвале». Второе высказывание — «Карлсон лечится вареньем».
Результатом логического умножения этих простых высказываний будет сложное высказывание «Карлсон живет в подвале и лечится вареньем». Первое исходное высказывание ложно, а второе истинно. Значение нового сложного высказывания — «ложь».
■ ПРИМЕР 5. Имеются два простых высказывания. Первое высказывание — «Карлсон живет на крыше». Второе высказывание — «Карлсон лечится мороженым».
Результатом логического умножения этих простых высказываний будет сложное высказывание «Карлсон живет на крыше и лечится мороженым». Первое исходное высказывание истинно, а второе ложно. Значение нового сложного высказывания «ложь».
* ПРИМЕР б. Имеются два простых высказывания. Одно высказывание — «Карлсон живет на крыше». Другое высказывание «Карлсон лечится вареньем».
Результатом логического умножения этих простых высказываний будет сложное высказывание «Карлсон живет на крыше и лечится вареньем». Оба исходных высказывания истинны. Зпачение нового сложного высказывания также «истина».
Можно заметить, что логическое умножение двух высказываний истинно только в одном случае — когда оба исходных высказывания истинны.
Логическое умножение (конъюнкция) — логическая операция, ставящая в соответствие двум простым высказываниям новое высказывание, значение которого истинно тогда и только тогда, когда оба исходных высказывания истинны.
ТАБЛИЦА ИСТИННОСТИ ДЛЯ ЛОГИЧЕСКОГО УМНОЖЕНИЯ
Таблица 41
A
| B
| A и B
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 0
| 1
| 1
| 1
| Если А = 0, В =0, то А И В— 0 (см. пример 3). Если А = 0, 7? = 1, то А И В — 0 (см. пример 4). Если/1 = 1, В = 0, то А И й=0 (см. пример 5). Если Л = \, В = \, то А\\ В = \ (см. пример 6).
Можно заметить, что результаты логического умножения совпадают с результатами обычного умножения нулей и единиц.
Логическое сложение двух простых высказываний получают объединением этих высказываний с помощью союза или. Разберем на примерах 7—10, что будет являться результатом логического сложения.
ПРИМЕР 7. Имеются два простых высказывания. Одно высказывание — «Комедию «Ревизор» написал М. Ю. Лермонтов». Другое высказывание — «Комедию «Ревизор» написал И. А. Крылов».
Результатом логического сложения этих простых высказываний будет сложное высказывание «Комедию «Ревизор» написал М. Ю. Лермонтов или И. А. Крылов». Оба исходных высказываний ложны. Значение нового сложного высказывания также «ложь».
ПРИМЕР 8. Имеются два простых высказывания. Первое высказывание — «Комедию «Ревизор» написал М. Ю. Лермонтов». Второе высказывание — «Комедию «Ревизор» написал Н. В. Гоголь».
Результатом логического сложения этих простых высказываний будет сложное высказывание «Комедию «Ревизор» написал М, К). Лермонтов или Н. В. Гоголь». Первое исходное выысказывание ложно, а второе истинно. Значение нового сложного высказывания - «истина» .
ПРИМЕР 9. Имеются два простых высказывания. Первое высказывание - «Поэму «Мцыри» написал М. Ю. Лермонтов». Второе высказывание - «Поэму «Мцыри» написал Н . В . Гоголь» . Результатом логического сложения этих простых высказываний будет сложное высказывание «Поэму «Мцыри» написал М. Ю. Лермонтов или Н. В. Гоголь». Первое исходное высказывание истинно, а второе ложно. Значение нового сложного высказывания - «истина» .
ПРИМЕР 10. Имеются два простых высказывания. Одно высказывание - «А. С. Пушкин писал стихи» Другое высказывание -«А. С. Пушкин писал прозу». Результатом логического сложения этих простых высказываний будет сложное высказывание «А. С. Пушкин писал стихи или прозу». Оба исходных высказывания истинны. Значение нового сложного высказывания также «истина».
Можно заметить, что логическое сложение двух высказываний ложно только в одном случае - когда оба исходных высказывания ложны.
Логическое сложение (дизъюнкция) - логическая операция, ставящая в соответствие двум простым высказываниям новое высказывание, значение которого ложно тогда и только тогда, когда оба исходных высказывания ложны.
Обозначим одно простое высказывание логической переменной А, а другое простое высказывание логической переменной В.
Тогда логическое сложение этих высказываний будем обозначать А ИЛИ В
Запишем все возможные значения логических переменных A, B , а так же соответствующий результат логического сложения А ИЛИ В в виде таблицы которая называется таблицей истинности.
Действия с двоичными знаками выполняются в соответствии с таблицами истинности для логического сложения
Если А=0, В =0, то А ИЛИ В =0 (см.пример 7)
Если А=0, В =1, то А ИЛИ В =1 (см.пример 8)
Если А=1, В =0, то А ИЛИ В =1 (см.пример 9)
Если А=1, В =1, то А ИЛИ В =1 (см.пример 10)
| А
| В
| А ИЛИ В
| 0
| 0
| 0
| 0
| 1
| 1
| 1
| 0
| 1
| 1
| 1
| 1
|
| Можно заметить, что результаты логического сложения, кроме последней строки, совпадают с результатами обычного сложения нулей и единиц.
Таким образом, используя язык логики, рассуждения можно заменить действиями с высказываниями. Высказываниям, в свою очередь, можно поставить в соответствие двоичный знак - 0 или 1. Действия с двоичными знаками выполняются в соответствии с таблицами истинности для основных логических операций логического отрицания, логического умножения и логического сложения (см. табл. 40-42)
23. Высказывания. Логические операции
Логическое сложение (дизъюнкция) двух высказываний ложно
1) тогда и только тогда, когда оба высказывания истинны
2) тогда и только тогда, когда оба высказывания ложны
3) когда хотя бы одно высказывание истинно
4) когда хотя бы одно высказывание ложно
Логические выражения. Выполнение логических операций
Запись логических выражений, приоритет выполнения логических операций, нахождение значения логического выражения, выполнение логических операций с информацией различного вида Логическое отрицание, логическое умножение и логическое сложение образуют полную систему логических операций, с помощью которой можно составить любое сложное высказывание и определить его истинность. При описании рассуждений с помощью языка математической логики простые высказывания обозначаются логическими переменными (латинскими буквами), значения высказываний обозначаются логическими константами (нулями или единицами), а логические операции обозначаются специальными связками (НЕ, И, ИЛИ). Запись, составляемая с помощью таких переменных, констант и связок, получила название логического выражения.
Логическое выражение - символическая запись на языке математической логики, составленная из логических переменных или логических констант, объединенных логическими операциями (связками).
При нахождении значения логического выражения логические операции выполняются в определенном порядке, согласно их приоритету - вначале логическое отрицание, потом логическое умножение и лишь затем логическое сложение. Логические операции, имеющие один и тот же приоритет, выполняются слева направо. Для изменения порядка выполнения логических операций используются скобки.
■ ПРИМЕР 1. Дано простое истинное высказывание А = «Аристотель - древнегреческий философ» и простое ложное высказывание В = «Аристотель - древнерусский философ».
Действия над информацией. Основные операции
значения сложных высказываний, которые соответствуют следующим логическим выражениям:
1) НЕ А;
2) А ИЛИ В;
3) А И (НЕВ).
• Решение. 1) Результатом логического отрицания высказывания А будет высказывание «Неверно, что Аристотель - древнегреческий философ». Поскольку значение исходного высказывания «истина» А = 1, то значение логического отрицания этого высказывания «ложь» НЕ А =0 (см. табл. 40). 2) Результатом логического сложения двух высказываний будет высказывание «Аристотель - древнегреческий или Аристотель -древнерусский философ». Поскольку значение первого исходного высказывания «истина» А = 1, а значение второго исходного высказывания «ложь» В = 0, то значение логического сложения этих высказываний «истина» А ИЛИ В =1 (см. табл. 42). 3) Результатом логического умножения высказывания А и логического отрицания высказывания В будет высказывание «Аристотель - древнегреческий философ, и неверно, что Аристотель - древнерусский философ». Вначале выполняем логическое отрицание высказывания В. Поскольку значение исходного высказывания «ложь» В = 0, то значение логического отрицания этого высказывания «истина» НЕ В = 1 (см. табл. 40). Поскольку значение первого исходного высказывания «истина» А = 1 и значение логического отрицания второго исходного высказывания «истина» НЕ В =1, то значение логического умножения этих высказываний «истина» А И (НЕ В) =1
(см. табл. 41)
Ответ. 1) «Ложь»; 2) «истина»; 3) «истина». Для нахождения значения сложного высказывания достаточно знать значения простых высказываний, входящих в сложное высказывание, и правила выполнения логических операций, которые объединяют эти простые высказывания.
■ ПРИМЕР 2. Найти значение логического выражения НЕ А ИЛИ (0 ИЛИ 1) И (НЕ В И 1), если значения логических переменных А =1, В =0.
• Решение. 1) Заменим в логическом выражении логические переменные логическими константами. НЕАИЛИ(0ИЛИ 1)И(НЕВИ 1)= =НЕ1ИЛИ(0ИЛИ1)И(НЕ0И1).
2) Определим последовательность выполнения логических операций в соответствии с их приоритетом. НЕ4 1 ИЛИ6 (0 ИЛИ1 1) И5 (НЕг 0 И3 1).
| Домашнее задание: построить таблицу истинности по формуле
( (((A/\B)\/C)/\C)\/D)
|
|
|