Главная страница
Навигация по странице:

  • Высказывание

  • Логическая операция

  • Логическое отрицание (инверсия)

  • Логическое умножение (конъюнкция)

  • ПРИМЕР 7

  • Логическое сложение (дизъюнкция)

  • 23. Высказывания. Логические операции

  • Дискредитации. дискретная. Высказывания. Логические операции


    Скачать 30.96 Kb.
    НазваниеВысказывания. Логические операции
    АнкорДискредитации
    Дата30.11.2022
    Размер30.96 Kb.
    Формат файлаdocx
    Имя файладискретная.docx
    ТипДокументы
    #821633

    Высказывания. Логические операции.


    Высказывания. Логические операции

    Простые и сложные высказывания, логиче­ские переменные и логические константы, логическое отрицание, логическое умноже­ние, логическое сложение, таблицы истин­ности для логических операций

    Для автоматизации информационных процессов необходимо уметь не только единообразно представ­лять информацию различных видов (числовую, текс­товую, графическую, звуковую) в виде последова­тельностей нулей и единиц, но и определять дейст­вия, которые можно выполнять над информацией. Выполнение таких действий производится в соответ­ствии с правилами, которым подчиняется процесс мышления. Говоря иначе, в соответствии с законами логики. Термин «логика» образован от древнегрече­ского слова 1о§08, означающего «мысль, рассуждение, закон». Наука логика изучает законы и формы мыш­ления, способы доказательств.

    Для описания рассуждений и правил выполне­ния действий с информацией используют специаль­ный язык, принятый в математической логике. В осно­ве рассуждений содержатся специальные предложе­ния, называемые высказываниями. В высказываниях всегда что-либо утверждается или отрицается об объ­ектах, их свойствах и отношениях между объекта­ми. Высказыванием является любое суждение, отно­сительно которого можно сказать, истинно оно или ложно. Высказываниями могут быть только повест­вовательные предложения. Вопросительные или по­будительные предложения высказываниями не явля­ются.                                                                           

    Высказывание — суждение, сформулированное в виде по­вествовательного предложения, о котором можно сказать, истинно оно или ложно.

     Например, вопросительные предложения «В каком году было первое летописное упоминание о Москве?» и «Что является внешней памятью компьютера?» или побудительное предло­жение «Соблюдайте правила техники безопасности в компью­терном классе» высказываниями не являются. Повествователь­ные предложения «Первое летописное упоминание о Москве было в 1812 г.», «Оперативное запоминающее устройство являет­ся внешней памятью компьютера» и «В компьютерном классе не надо соблюдать правила техники безопасности» являются выска­зываниями, поскольку это суждения, о каждом из которых мож­но сказать, что оно ложно. Истинными высказываниями будут суждения «Первое летописное упоминание о Москве было в 1147 г.», «Жесткий магнитный диск является внешней памятью компьютера».

    Каждому высказыванию соответствует только одно из двух значений: или «истина», или «ложь», которые являются логиче­скими константами. Истинное значение принято обозначать цифрой 1, а ложное значение — цифрой 0. Высказывания можно обозначать с помощью логических переменных, в качестве кото­рых используются заглавные латинские буквы. Логические пере­менные могут принимать только одно из двух возможных значе­ний: «истина» или «ложь». Например, высказывание «Информа­ция в компьютере кодируется с помощью двух знаков» можно обозначить логической переменной А, а высказывание «Прин­тер является устройством хранения информации» можно обо­значить логической переменной В. Поскольку первое выска­зывание соответствует действительности, то А = 1. Такая запись означает, что высказывание А истинно. Так как второе высказы­вание не соответствует действительности, то В = 0. Такая запись означает, что высказывание в ложно.

    Высказывания могут быть простыми и сложными. Высказывание называется простым, если никакая его часть не является высказыванием. До сих пор были приведены примеры простых высказываний, которые обозначались логическими перемены ми. Выстраивая цепочку рассуждений, человек с помощью логических операций объединяет простые высказывания в сложнее' высказывания. Чтобы узнать значение сложного высказывания нет необходимости вдумываться в его содержание. Достаточно знать значение простых высказываний, составляющих сложное высказывание, и правила выполнения логических операций.

    Логическая операция — действие, позволяющее составлять сложное высказывание из простых высказываний.

    Все рассуждения человека, а также работа современных тех­нических устройств основываются на типовых действиях с ин­формацией — трех логических операциях: логическом отрица­нии (инверсии), логическом умножении (конъюнкции) и логи­ческом сложении (дизъюнкции).

    Логическое отрицание простого высказывания получают до­бавлением слов «Неверно, что» в начале простого высказывания.

    ■                     ПРИМЕР 1. Имеется простое высказывание «Крокодилы уме­ют летать». Результатом логического отрицания будет высказы­вание «Неверно, что крокодилы умеют летать». Значение ис­ходного высказывания — «ложь», а значение нового — «истина».

    ■                     ПРИМЕР 2. Имеется простое высказывание «Файл должен иметь имя». Результатом логического отрицания будет высказы­вание «Неверно, что файл должен иметь имя». Значение исход­ного высказывания — «истина», а значение нового высказыва­ния — «ложь».

    Можно заметить, что логическое отрицание высказывания истинно, когда исходное высказывание ложно, и наоборот, ло­гическое отрицание высказывания ложно, когда исходное вы­сказывание истинно.

    Логическое отрицание (инверсия) — логическая операция, ставящая в соответствие простому высказыванию новое высказывание, значение которого противоположно значе­нию исходного высказывания.

    Обозначим простое высказывание логической переменной А. Тогда логическое отрицание этого высказывания будем обозначать НЕ А. Запишем все возможные значения логической переменной А и соответствующие результаты логического отрицания НЕ А в виде таблицы, которая называется таблицей истинности для логичес­кого отрицания (табл. 40).


    ТАБЛИЦА ИСТИННОСТИ ДЛЯ ЛОГИЧЕСКОГО ОТРИЦАНИЯ

      

    Если/1 = 0, то НЕ А = 1 (см. пример 1).  

    Если А = 1, то НЕ А = 0 (см. пример 2)

    А

    не А

    0

    1

    1

    0



    Можно заметить, что в таблице истинности для логическо­го отрицания ноль меняется на единицу, а единица меняется на ноль.

    Логическое умножение двух простых высказываний получа­ют объединением этих высказываний с помощью союза и. Разбе­рем на примерах 3—6, что будет являться результатом логическо­го умножения.

    ■                     ПРИМЕР 3. Имеются два простых высказывания. Одно выска­зывание — «Карлсон живет в подвале». Другое высказывание — «Карлсон лечится мороженым».

    Результатом логического умножения этих простых высказы­ваний будет сложное высказывание «Карлсон живет в подвале, и Карлсон лечится мороженым». Можно сформулировать новое высказывание более кратко: «Карлсон живет в подвале и лечится мороженым». Оба исходных высказывания ложны. Значение но­вого сложного высказывания также «ложь».

    ■                     ПРИМЕР 4. Имеются два простых высказывания. Первое вы­сказывание — «Карлсон живет в подвале». Второе высказыва­ние — «Карлсон лечится вареньем».

    Результатом логического умножения этих простых выска­зываний будет сложное высказывание «Карлсон живет в подва­ле и лечится вареньем». Первое исходное высказывание ложно, а второе истинно. Значение нового сложного высказывания — «ложь».

    ■                     ПРИМЕР 5. Имеются два простых высказывания. Первое вы­сказывание — «Карлсон живет на крыше». Второе высказыва­ние — «Карлсон лечится мороженым».

    Результатом логического умножения этих простых высказываний будет сложное высказывание «Карлсон живет на крыше и лечится мороженым». Первое исходное высказывание истинно, а второе ложно. Значение нового сложного высказывания «ложь».

    * ПРИМЕР б. Имеются два простых высказывания. Одно высказывание — «Карлсон живет на крыше». Другое высказывание «Карлсон лечится вареньем».

    Результатом логического умножения этих простых высказываний будет сложное высказывание «Карлсон живет на крыше и лечится вареньем». Оба исходных высказывания истинны. Зпачение нового сложного высказывания также «истина».

    Можно заметить, что логическое умножение двух высказываний истинно только в одном случае — когда оба исходных высказывания истинны.

    Логическое умножение (конъюнкция) — логическая опера­ция, ставящая в соответствие двум простым высказывани­ям новое высказывание, значение которого истинно тогда и только тогда, когда оба исходных высказывания истинны.

    ТАБЛИЦА ИСТИННОСТИ ДЛЯ ЛОГИЧЕСКОГО УМНОЖЕНИЯ

    Таблица 41

    A

    B

    A и B

    0

    0

    0

    0

    1

    0

    1

    0

    0

    1

    1

    1

    Если А = 0, В =0, то А И В— 0 (см. пример 3). Если А = 0, 7? = 1, то А И В — 0 (см. пример 4). Если/1 = 1, В = 0, то А И й=0 (см. пример 5). Если Л = \, В = \, то А\\ В = \ (см. пример 6).

    Можно заметить, что результаты логического умножения сов­падают с результатами обычного умножения нулей и единиц.

    Логическое сложение двух простых высказываний получают объединением этих высказываний с помощью союза или. Разбе­рем на примерах 7—10, что будет являться результатом логиче­ского сложения. 

           ПРИМЕР 7. Имеются два простых высказывания. Одно высказы­вание — «Комедию «Ревизор» написал М. Ю. Лермонтов». Другое высказывание — «Комедию «Ревизор» написал И. А. Крылов».

    Результатом логического сложения этих простых высказыва­ний будет сложное высказывание «Комедию «Ревизор» написал М. Ю. Лермонтов или И. А. Крылов». Оба исходных высказыва­ний ложны. Значение нового сложного высказывания также «ложь».

     ПРИМЕР 8. Имеются два простых высказывания. Первое выска­зывание — «Комедию «Ревизор» написал М. Ю. Лермонтов». Вто­рое высказывание — «Комедию «Ревизор» написал Н. В. Гоголь».

    Результатом логического сложения этих простых высказыва­ний будет сложное высказывание «Комедию «Ревизор» написал М, К). Лермонтов или Н. В. Гоголь». Первое исходное выысказывание ложно, а второе истинно. Значение нового сложного высказывания - «истина» .

    ПРИМЕР 9. Имеются два простых высказывания. Первое высказывание - «Поэму «Мцыри» написал М. Ю. Лермонтов». Второе высказывание - «Поэму «Мцыри» написал Н . В . Гоголь» . Результатом логического сложения этих простых высказываний будет сложное высказывание «Поэму «Мцыри» написал М. Ю. Лермонтов или Н. В. Гоголь». Первое исходное высказывание истинно, а второе ложно. Значение нового сложного высказывания - «истина» .

     ПРИМЕР 10. Имеются два простых высказывания. Одно высказывание - «А. С. Пушкин писал стихи» Другое высказывание -«А. С. Пушкин писал прозу». Результатом логического сложения этих простых высказываний будет сложное высказывание «А. С. Пушкин писал стихи или прозу». Оба исходных высказывания истинны. Значение нового сложного высказывания также «истина».

     Можно заметить, что логическое сложение двух высказываний ложно только в одном случае - когда оба исходных высказывания ложны.

     Логическое сложение (дизъюнкция) - логическая операция, ставящая в соответствие двум простым высказываниям новое высказывание, значение которого ложно тогда и только тогда, когда оба исходных высказывания ложны.

      Обозначим одно простое высказывание логической переменной А, а другое простое высказывание логической переменной В.

    Тогда логическое сложение этих высказываний будем обозначать А ИЛИ В

    Запишем все возможные значения логических переменных  A, B , а так же соответствующий результат логического сложения А ИЛИ В в виде таблицы которая называется таблицей истинности.

    Действия с двоичными знаками выполняются в соответствии с таблицами истинности для логического сложения

     Если А=0, В =0, то А ИЛИ В =0 (см.пример 7)

    Если А=0, В =1, то А ИЛИ В =1 (см.пример 8)

    Если А=1, В =0, то А ИЛИ В =1 (см.пример 9)

    Если А=1, В =1, то А ИЛИ В =1 (см.пример 10)

    А

    В

    А ИЛИ В

    0

    0

    0

    0

    1

    1

    1

    0

    1

    1

    1

    1



    Можно заметить, что результаты логического сложения, кроме последней строки, совпадают с результатами обычного сложения нулей и единиц.

    Таким образом, используя язык логики, рассуждения можно заменить действиями с высказываниями. Высказываниям, в свою очередь, можно поставить в соответствие двоичный знак - 0 или 1. Действия с двоичными знаками выполняются в соответствии с таблицами истинности для основных логических операций логического отрицания, логического умножения и логического сложения (см. табл. 40-42)

      23. Высказывания. Логические операции

    Логическое сложение (дизъюнкция) двух высказываний ложно

     1) тогда и только тогда, когда оба высказывания истинны

    2) тогда и только тогда, когда оба высказывания ложны

    3) когда хотя бы одно высказывание истинно

    4) когда хотя бы одно высказывание ложно

    Логические выражения. Выполнение логических операций

    Запись логических выражений, приоритет выполнения логических операций, нахождение значения логического выражения, выполнение логических операций с информацией различного вида Логическое отрицание, логическое умножение и логическое сложение образуют полную систему логических операций, с помощью которой можно составить любое сложное высказывание и определить его истинность. При описании рассуждений с помощью языка математической логики простые высказывания обозначаются логическими переменными (латинскими буквами), значения высказываний обозначаются логическими константами (нулями или единицами), а логические операции обозначаются специальными связками (НЕ, И, ИЛИ). Запись, составляемая с помощью таких переменных, констант и связок, получила название логического выражения.

    Логическое выражение - символическая запись на языке математической логики, составленная из логических переменных или логических констант, объединенных логическими операциями (связками).

    При нахождении значения логического выражения логические операции выполняются в определенном порядке, согласно их приоритету - вначале логическое отрицание, потом логическое умножение и лишь затем логическое сложение. Логические операции, имеющие один и тот же приоритет, выполняются слева направо. Для изменения порядка выполнения логических операций используются скобки.

    ■ ПРИМЕР 1. Дано простое истинное высказывание А = «Аристотель - древнегреческий философ» и простое ложное высказывание В = «Аристотель - древнерусский философ».

     Действия над информацией. Основные операции

    значения сложных высказываний, которые соответствуют следующим логическим выражениям:

    1) НЕ А;

    2) А ИЛИ В;

    3) А И (НЕВ).

    • Решение. 1) Результатом логического отрицания высказывания А будет высказывание «Неверно, что Аристотель - древнегреческий философ». Поскольку значение исходного высказывания «истина» А = 1, то значение логического отрицания этого высказывания «ложь» НЕ А =0 (см. табл. 40). 2) Результатом логического сложения двух высказываний будет высказывание «Аристотель - древнегреческий или Аристотель -древнерусский философ». Поскольку значение первого исходного высказывания «истина» А = 1, а значение второго исходного высказывания «ложь» В = 0, то значение логического сложения этих высказываний «истина» А ИЛИ В =1 (см. табл. 42). 3) Результатом логического умножения высказывания А и логического отрицания высказывания В будет высказывание «Аристотель - древнегреческий философ, и неверно, что Аристотель - древнерусский философ». Вначале выполняем логическое отрицание высказывания В. Поскольку значение исходного высказывания «ложь» В = 0, то значение логического отрицания этого высказывания «истина» НЕ В = 1 (см. табл. 40). Поскольку значение первого исходного высказывания «истина» А = 1 и значение логического отрицания второго исходного высказывания «истина» НЕ В =1, то значение логического умножения этих высказываний «истина» А И (НЕ В) =1

                 (см. табл. 41)

     Ответ. 1) «Ложь»; 2) «истина»; 3) «истина». Для нахождения значения сложного высказывания достаточно знать значения простых высказываний, входящих в сложное высказывание, и правила выполнения логических операций, которые объединяют эти простые высказывания.

     ■ ПРИМЕР 2. Найти значение логического выражения НЕ А ИЛИ (0 ИЛИ 1) И (НЕ В И 1), если значения логических переменных А =1, В =0.

    • Решение. 1) Заменим в логическом выражении логические переменные логическими константами. НЕАИЛИ(0ИЛИ 1)И(НЕВИ 1)= =НЕ1ИЛИ(0ИЛИ1)И(НЕ0И1).

     2) Определим последовательность выполнения логических операций в соответствии с их приоритетом. НЕ4 1 ИЛИ6 (0 ИЛИ1 1) И5 (НЕг 0 И3 1).

    Домашнее задание: построить таблицу истинности по формуле

    ( (((A/\B)\/C)/\C)\/D)



    написать администратору сайта