Главная страница
Навигация по странице:

  • 3.1 Мероприятия в процессе строительства

  • 3.2 Мероприятия по защите от шумовых воздействий

  • 3.3. Эффективность снижения экраном концентраций оксида и диоксида азота

  • 3.4. Зеленые защитные насаждения

  • 3.5 Концентрации загрязняющих веществ в воздухе после проведения природоохранных мероприятий

  • 3.6 Мероприятия по охране почв

  • Работа. Строительная экология самостоятельная работа Бикбулатов Б.С. Влияние строительства автомобильной дороги на окружающую среду по дисциплине Строительная экология


    Скачать 471.63 Kb.
    НазваниеВлияние строительства автомобильной дороги на окружающую среду по дисциплине Строительная экология
    АнкорРабота
    Дата20.05.2021
    Размер471.63 Kb.
    Формат файлаdocx
    Имя файлаСтроительная экология самостоятельная работа Бикбулатов Б.С.docx
    ТипДокументы
    #207627
    страница3 из 3
    1   2   3

    3. ОЦЕНКА ВОЗДЕЙСТВИЯ НА ЭКОЛОГИЮ АВТОМОБИЛЬНЫХ ДОРОГ И РЕКОМЕНДАЦИИ ПО СНИЖЕНИЮ


    3.1 Мероприятия в процессе строительства

    Городок строителей и строительная площадка во избежание дополнительных воздействий располагаются за пределами жилой зоны пос. Донской. Отвод коммунальных стоков в объеме 3,8 м3 в сутки частично направляется в выгребные ямы, откуда вывозится ассенизационными машинами, а частично направляется на гидроботанические площадки для очистки. Производственные стоки в объеме 1,2 м3 в сутки для очистки направляются на гидроботанические площадки.

    Для снижения уровней шума и запыленности воздуха строительные площадки огораживаются типовыми ограждающими конструкциями. В летнее время в сухие периоды для уменьшения запыленности производится увлажнение технологических грунтовых дорог, расположенных на стройплощадке.

    Планом проведения работ по сооружению путепровода предусматривается обеспечение непрерывного движения транспорта по Приморскому шоссе.

    Планом строительных работ для обеспечения допустимых условий по шумности исключается проведение работ в ночное время.

    По окончании строительных работ производится разборка и вывоз временных конструкций, остатков строительных материалов и мусора.
    3.2 Мероприятия по защите от шумовых воздействий

    Следующий ряд мероприятий направлен на снижение отрицательного экологического влиянии автотранспорта: это ликвидация дорожных пробок, использование общественного транспорта, улучшение экологических показателей автотранспорта.

    Ликвидация дорожных пробок

    Дорожные пробки - знакомое явление для всех крупных городов мира. Они возникают потому, что спрос на использование дорог превышает реальные возможности дорожной сети. Все автомобильные дороги (а также метро, трамвай, железные дороги) имеют ограниченные возможности по пропускной способности в условиях «свободного потока», т. е. когда движение одного транспортного средства не оказывает влияния на скорость, с которой движутся другие пользователи дорог. Как только этот показатель превышен, появление дополнительных транспортных средств на дороге замедляет общую скорость движения. Критическая вместимость дороги и влияние дополнительных транспортных средств на скорость движения зависят от физических и инженерных характеристик магистралей. Следует подчеркнуть, что дорожные пробки (в свете названных проблем) могут возникать и в тех случаях, когда в них застревает не весь транспорт. Тотальная блокировка движения — экстремальный случай дорожной пробки.

    При замедлении скорости движения увеличиваются эксплуатационные затраты на километр пробега транспортного средства в результате более высокого потребления горючего и износа главных компонентов. Что еще более важно, увеличивается время, затрачиваемое на поездку, а во многих случаях это время вообще становится непредсказуемым. И, наконец, это имеет и другие отрицательные последствия для пользователей дорог: потеря свободного времени; снижение производительности тех пользователей дорог, которые совершают поездки в рабочее время; повышение стоимости товаров, находящихся в пути.

    В больших городах для улучшения движения автотранспорта строятся объездные дороги для междугороднего транспорта, подземные и надземные транспортные магистрали, на которых транспорт движется с оптимальной скоростью, без остановок, что также способствует сокращению расхода бензина и снижению объема выбросов.

    Использование общественного транспорта

    Общественный транспорт использует значительно меньше дорожного пространства на одного перевозимого пассажира, чем личный транспорт. Поэтому при поездках общественным транспортом вместо личного (или рельсовым общественным транспортом вместо одного из видов автодорожного транспорта) общий транспортный поток снижается, а степень перегруженности дорог сокращается.

    Такой результат возможен, если показатель загрузки общественного транспорта превышает 8—12 пассажиров. Это позволяет перераспределить дорожное пространство для других нужд, улучшив, таким образом, качество городского ландшафта, увеличив площади зеленых и пешеходных зон и т. д. Экологические и экономические показатели городского транспорта значительно различаются в зависимости от вида транспорта. В табл. А-1 приведены для сравнения ориентировочные показатели различных видов городского транспорта


    Как видно из таблицы, общественный транспорт потребляет в 3 раза меньше энергии, чем автомобиль, на пассажирокилометр перевозок. Автобус, в расчете на один пассажи-рокилометр, выбрасывает в 3 раза меньше углекислого газа, чем легковой автомобиль; метрополитен — в 20 раз меньше, чем легковой автомобиль. Автобус, в расчете на один пассажирокилометр, выбрасывает в 25 раз меньше окиси углерода, чем автомобиль с бензиновым двигателем, и в 4 раза меньше частиц, чем автомобиль с дизельным двигателем.

    Эти показатели характерны для многих европейских городов с эффективной сетью общественного транспорта. В российских городах положение примерно такое же. Средняя степень заполнения автомобиля значительно выше, но одновременно выше и степень заполнения общественного транспорта, т. е. соотношение показателей потребления энергии такое же, как в табл. А-1, но значение потребления энергии и общественным, и личным транспортом в два раза ниже.

    В городах США (кроме таких крупных, как Нью-Йорк, Бостон, Чикаго и др.) преимущества общественного транспорта не могут быть в достаточной степени реализованы, что связано с недостаточной развитостью сети такого городского транспорта.

    В Японии, наоборот, рельсовые дороги и хорошо развитые сети метрополитена, в условиях острого дефицита городских территорий, перевозят большое количество пассажиров и характеризуются лучшими показателями потребления энергии и влияния на окружающую среду на пассажирокилометр перевозок.

    Следует отметить, что чем выше степень заполнения транспортного средства, тем лучше его экономические и экологические показатели.

    Использование общественного транспорта вместо других видов транспорта приводит также к снижению числа ДТП. Причин этому несколько:

    - использование, в особенности на рельсовом транспорте, специальных систем сигнализации, информации, блокировки;

    - более высокие требования к водителям средств общественного транспорта (отбор, обучение, дисциплина, управление и контроль, медицинское обследование);

    - более высокие стандарты техобслуживания; 0

    - использование проектных решений, направленных на минимизацию несчастных случаев и повреждений.

    Улучшение экологических показателей автотранспорта

    В мировой практике ведутся интенсивные работы по улучшению экологических характеристик как общественного, так и личного транспорта.

    При торможении транспортного средства, оборудованного двигателем внутреннего сгорания, происходит потеря энергии. Кинетическая энергия машины тратится на разогрев и износ тормозных колодок, на истирание шин и асфальта. Чтобы разогнать машину или автобус, требуется затратить новую порцию топлива.

    Электродвигатели метро, поездов, троллейбусов при торможении работают как генераторы, частично возвращая энергию в общую сеть.

    Ряд фирм выпускает автомобили и автобусы с гибридным приводом от дизеля и от электромотора. Последний питается от аккумуляторных батарей, в которые и отводится энергия при торможении. В автобусах, оснащенных этими приводами, расход топлива снижается на 15%.

    Впрочем, главный выигрыш не экономический, а экологический — снижение вредных выбросов и шума.

    Большинство таких автобусов работают в курортных зонах, где требования к чистоте и тишине особенно высоки.

    Требования Европейского Союза к экологичности транспорта ужесточаются каждые несколько лет, в связи с чем продолжаются интенсивные исследования, направленные на использование более экологически чистого горючего, чем бензин, таких, как метанол, сжиженный газ, аквазол — дизельное топливо, содержащее 13% воды.

    Ведутся разработки «топливного элемента» — батареи, в которой электричество вырабатывалось бы за счет окисления топлива.

    Одним из эффективных мероприятий по снижению выбросов автотранспорта является использование так называемых CRT-фильтров — каталитических дожигателей (см. Очистка газовых выбросов), устанавливаемых на обычных автомобилях и автобусах вместо глушителя. Это удорожает машину всего на 1-2%.

    Фильтр улавливает и дожигает на катализаторе как газообразные продукты неполного сгорания (в основном СО и соединения углерода с азотом), так и содержащиеся в выхлопе твердые частицы и микроскопические капельки масла.

    3.3. Эффективность снижения экраном концентраций оксида и диоксида азота

    Для изучения закономерностей снижения автотранспортного шума с увеличением расстояния от улицы (дороги) рекомендуется проводить одновременные попарные измерения шума в двух точках, расположенных по перпендикуляру к улице или дороге, но на разных расстояниях. При этом одна точка постоянно располагается в 7,5 м от оси ближней полосы движения (как и при определении шумовой характеристики), а вторая точка измерений располагается последовательно на расстоянии 15, 30, 60 и 120 м и т.п. от дороги (возможен набор других расстояний). Разность уровней звука в опорной точке (7,5 м) и второй точке характеризует снижение шума с расстоянием между этими точками. Анализ попарных разностей уровней позволяет получать закономерности снижения шума с расстоянием, независимо от изменения шумовой характеристики потока, от одной серии измерений к другой и представлять их в виде графика. В получавшихся при измерениях уровнях шума автоматически учитываются все факторы, влияющие на распространение транспортного шума на соответствующем участке прилегающей территории.Полученные при измерениях данные могут быть использованы

    • как для непосредственной оценки шумовых характеристик автотранспортных

    • потоков и шумового режима на селитебной территории и в застройке, так

    • и для разработки и уточнения методик расчета ожидаемого шумового

    • режима в застройке и при разработке шумозащитных мероприятий, в

    • частности, при проектировании шумозащитных экранов.

    3.4. Зеленые защитные насаждения

    Защитные насаждения представляют собой полосы, состоящие из нескольких рядов растений. Кроме непосредственных защитных функций, а именно: защиты почвы и микроклимата, маскировки и преграды (ограждения), насаждения способствуют расчленению и укреплению структуры ландшафта, его биологическому обогащению. Они не только обеспечивают естественное существование живых организмов различных видов (микроорганизмы, насекомые, мелкие млекопитающие, птицы и др.), но и способствуют биологической регенерации прилегающих земельных площадей.

    При закладке защитных насаждений обычно чередуют растения различной высоты. При этом целесообразно группировать растения одного вида в несколько рядов. Групповая структура насаждений изначально ориентирована на его окончательное состояние и улучшает зрительное восприятие посадок. В узких полосах в одну группу объединяют 3…5 экземпляров растений одного вида, а в более широких полосах — 5… 15 экземпляров.



    Рис. 1. Маскировочные зеленые насаждения: а — план; б — сечение по посадкам

    Быстрорастущие (авангардные) породы высаживают по одному дереву в интервалы между основной породой. При удалении этих растений через несколько лет (или десятилетий) не должно оставаться пустот. Для всех защитных паст/ндений характерно пирамидальное построение, т. е. высокие рлстенмя располагают в центр, а низкорослые и кустарники по краям. Чем шире полоса, тем легче осуществигь этот принцип построения.

    Маскировочные зеленые насаждения прикрывают малопривлекательные участки. При их посадке требуется возможно более скорое смыкание многолетних растений на достаточной высоте. Предпочтение отдают деревьям и кустарникам с густой кроной и крупными листьями, а также вечнозеленым породам. В качестве авангардной породы лучше всего выбрать тополь, отличающийся густой высокой кроной и быстрым ростом. Использование хвойных пород деревьев в защитных полосах весьма затруднительно в зимнее время. Использование пихт в целях маскировки полностью исключается, поскольку нижняя часть ствола быстро оголяется, к тому же пихта плохо сопротивляется ветровой нагрузке. Сосна хорошо приспосабливается к лиственным породам, хотя ее ствол тоже со временем оголяется.

    Пылезащитные насаждения служат для очистки воздуха. Борьба с запыленностью при помощи защитных насаждений эффективна лишь в очень небольших пределах, в первую очередь эту проблему следует решать технологическими средствами. Площади, покрытые растительностью, в особенности лесные угодья, задерживают пыль благодаря трем факторам: уменьшению скорости ветра и повышенной влажности, а также увеличению площади осаждения. Чем шире полоса насаждений различной Высоты и плотности, тем больший очищающий эффект она оказывает. В этом смысле узкие защитные полосы не могут активно очищать воздух. Зона ветровой тени на пути запыленного воздуха также весьма ограничена: с подветренной стороны остается лишь узкая полоска относительно чистого воздуха. Однако крупные и тяжелые частицы пыли все-таки осаждаются, фильтруются защитными посадками.

    Почвозащитные насаждения оказывают благоприятное воздействие на микроклимат почвы, способствуют повышению продуктивности полеводства и садоводства. Основные полосы защитных насаждении располагают перпендикулярно господствующему направлению ветра. Они соединяются между собой вспомогательными полосами. В результате образуются зоны, ограниченные насаждениями (микроклиматические пространства). Площадь каждой зоны принимают не менее 10 га, а участок имеет вытянутую форму и перпендикулярен господствующему направлению ветра.

    Шумозащитные валы позволяют значительно снизить уровень шума на небольшом расстоянии от источника; для этого склон вала, обращенный к источнику шума, должен быть как можно более крутым. Крутизна склонов более 1:1,5 неудобна с точки зрения их озеленения, а крутизна 1:1,25 ведет к эрозии насыпи.

    Посадка зеленых насаждений на шумозащитном валу предпочтительна по многим причинам, в том числе и потому, что наряду с усилением защитного действия деревья и кустарники позволяют маскировать источник звука, что оказывает благоприятный психоэмоциональный эффект (рис. 2).



    Рис. 2. Шумозащитные насаждения: 1 — крутой склон шумозащитной насыпи, обращенный в сторону источника шума; 2 — пологий склон со стороны защищаемого объекта; 3 — плотные насаждения с густой кроной; 4 — плотные древесно-кустарниковые насаждения

    Леса и перелески — наиболее устойчивая форма,зеленых насаждений. В ходе работ по землеустройству часто остаются земельные угодья неудобной формы, которые можно использовать под лесопосадки. Несмотря на случайный характер этих участков, их вклад в экологию ландшафта является существенным как с биологической, так и с эстетической стортшы.

    Структура лесного массива включает окаймляющую зону, покрытую дикорастущими или высеваемыми травянистыми растениями, защитную опушку с низкорослым кустарником, центральную, или лесную зону с высокими деревьями.

    Большие лесные массивы имеют в своей структуре открытые участки — поляны, окаймленные опушкой с аналогичным строением, и просеки. Перелески между полями служат местом отдыха и кормежки мелких диких животных и птиц, защищая их от непогоды и хищников. Поэтому перелески не следует удалять друг от друга на расстояние более 500 м. По краям зеленого массива формируют полосу густых кустарников шириной около 5 м, а отдельные перелески соединяют между собой живыми изгородями, межами, полосами защитных насаждений.

    Внутренняя зона зеленого массива (площадью 500…1500 м2, учитывая особенности разведения животных) может формироваться из различных по видовому составу лесопосадок с полянами.



    Рис. 3. Перелесок: 1 — ограждение; 2—окаймляющая зона (периодически скашивается); 3 — ограда для защиты посевов от потравы дикими животными; 4 — зона опушки с низкорослой растительностью (3… 10 рядов кустарника, немного деревьев; возможна плотная посадка авангардных видов); 5 — центральная зона с высокими деревьями (деревья 1-й и 2-й величины, немного кустарника; возможна разреженная посадка авангардных видов)

    На участках меньших размеров дикие животные сохраняются плохо. Обитание диких животных вызывает опасность потравы сельскохозяйственных культур; чтобы Избежать этого, достаточно в зоне опушки установить забор из проволочной сетки, закрытый кустарником (рис. 3).


    Озеленение примагистральных и свободных территорий городов играет огромную роль в снижении вредного действия автотранспорта на жителей городов, не говоря уже об оздоровлении среды обитания.

    Древесно-кустарниковые насаждения, поглощая из воздуха вредные газы и нейтрализуя их в тканях, способствуют сохранению газового баланса в атмосфере, биологическому очищению воздуха. На использовании газозащитных свойств зеленых насаждений основан принцип устройства санитарно-защитных зон. Эти свойства зеленых насаждений учитываются и при защите воздушного бассейна города от выбросов транспорта. В градостроительных условиях, когда зеленый массив граничит с напряженной автомагистралью, наблюдаются следующие закономерности падения уровней загрязнения, которые в значительной мере зависят от полноты, структуры и ассортимента насаждений: при увеличении полноты (степени сомкнутости крон) с 0,6-0,7 до 0,9—1 газозащитная эффективность растительности возрастает с 20—26 % до 30—40 %. В густых насаждениях (полнота 0,9—1) на расстоянии 30—40 м от магистрали концентрация диоксида азота снижается до санитарной нормы.

    В результате реализации части из вышеперечисленных мероприятий суммарные выбросы от московского автотранспорта в 2000 г. в целом по городу были снижены на 7,7 %, в 2001 г. — на 14,5 %. Это снижение было достигнуто, кроме того, и за счет введения в эксплуатацию и реконструкцию участков 3-го транспортного кольца общей протяженностью 16,1 км. Как следствие, средняя скорость транспорта, использующего для транзита эти участки, увеличилась в 2-3 раза.

    Еще одно немаловажное обстоятельство. Экономичным может считаться такое транспортное средство, которое способно перевозить груз больше собственной массы. На практике же этому требованию удовлетворяют лишь велосипед и легкие мотоциклы (мопеды), остальные машины в основном возят сами себя. Недопустимо, что в городских и без того экологически тяжелых условиях автомобильный транспорт используется крайне неэффективно из-за низкого коэффициента его загрузки (табл. 6).



    Очевидно, что повышение коэффициента загрузки транспортных средств, наряду с реальной возможностью улучшения экологической обстановки, позволит и существенно снизить количество сжигаемого топлива.

    3.5 Концентрации загрязняющих веществ в воздухе после проведения природоохранных мероприятий

    В результате использования шумозащитного экрана вдоль автодорог, а также зеленых насаждений, концентрации загрязняющих веществ в приземной атмосфере снижаются. Определяющую роль для назначения ширины СЗЗ при этом играет группа суммации (NO2 + SO2), причем участие SO2 здесь в силу очень малой его эмиссии пренебрежимо мало. Загрязнение воздуха другими веществами охватывает существенно меньшие по размерам зоны и потому далее не рассматривается.

    Результаты расчетов загрязнения атмосферы по определяющей группе суммации при эксплуатации транспортной развязки показывают, что за счет мероприятий удается ощутимо уменьшить размеры СЗЗ, особенно там, где установлены экраны. Также должна быть предусмотрена рекультивация брошенных участков дорог, временных строительно-технологических проездов и территорий, занимаемых на период проведения строительства.

    Технологические мероприятия

    Совершенствование двигателей внутреннего сгорания (ДВС) с искровым зажиганием. Наибольшее влияние на токсичность отработанных газов оказывают изменения, вносимые в систему питания и зажигания ДВС, поскольку они определяют процесс воспламенения и сгорания рабочей смеси. В настоящее время автомобили ведущих зарубежных фирм выбрасывают в атмосферный воздух в 10-16 раз меньше вредных веществ, нежели в 80-х гг., когда развернулись крупномасштабные и дорогостоящие исследования по созданию экологически приемлемых автомобилей. В значительной степени этому способствовали такие нововведения, как двигатели, работающие на переобедненных смесях, многоклапанные системы перераспределения, впрыск топлива вместо карбюраторного смесеобразования, электронное зажигание. При запуске холодного двигателя в современных карбюраторах используются автоматы пуска и прогрева. На режимах торможения двигателя применяют экономайзер принудительного холостого хода — клапан, отключающий подачу топлива.

    Стремительно растет число автомобилей с двигателями прямого впрыска топлива, которые обеспечивают уникальное сочетание характеристик: расход топлива на уровне дизелей и скорость спортивных машин на бензиновом топливе. Известная компания «Мицубиси моторе» уже несколько лет выпускает машины с двигателями нового класса. Благодаря этому на 25 % повышается экономия топлива в городских условиях, на 8 % снижается потребление топлива при движении со скоростью свыше 120 км/ч по сравнению с обычными бензиновыми двигателями и на 85 % увеличивается мощность по сравнению с дизельными аналогами (Ю. В. Новиков, 1998 г.).

    Фирма «Ауди» показала экспериментальную модель AZ-2, изготовленную из легкого алюминиевого сплава с 3-цилиндровым двигателем с рекордно низким потреблением бензина (3 л на 100 км пути), что достигнуто установкой двигателя с прямым впрыском топлива.

    В США усовершенствован карбюратор с раздельным смесеобразованием. Он позволяет кроме обычной смеси получать обогащенную, которая подается в специальную предкамеру со свечой зажигания. Благодаря этому происходит полное сгорание рабочей смеси, что, в свою очередь, позволяет свести до минимума содержание оксида углерода и углеводородов в выхлопных газах. Создан также карбюратор, благодаря которому возможно использовать низкооктановые сорта бензина без антидетонационных добавок.

    Во многих странах мира разрабатываются новые, более совершенные двигатели (или модернизируются «старые»), которые можно устанавливать на серийные автомобили. В частности, указывают на перспективность роторно-поршневого двигателя Ванкеля, который компактнее поршневых двигателей: объем в среднем на 30 %, а масса на 11 % меньше. Отличными характеристиками обладает также двигатель Стирлинга, усовершенствованный фирмой «Филипс». Он может работать на спирте, бензине, керосине, дизельном топливе, мазуте, сырой нефти, оливковом и подсолнечном маслах и на некоторых горючих газах. Работает двигатель очень плавно, без вибраций, а уровень его шума сравним с уровнем шума электродвигателя. Токсичность отработанных газов двигателя Стирлинга также значительно ниже токсичности отработанных газов ДВС: они практически не содержат продуктов неполного сгорания (СО, CnHm, сажа и т. д.) и не имеют неприятного запаха.

    Количество оксидов азота в выхлопе можно существенно уменьшить, если использовать рециркуляцию — перепуск части отработавших газов из выпускного трубопровода во впускной. При этом рециркуляция применяется не только на двигателях с искровым зажиганием, но и на дизельных.

    Экологичность автомобиля можно повысить, если установить электронные системы управления, которые оптимизируют работу не только двигателя, но и тормозов и других агрегатов.

    И в России имеются оригинальные разработки. Наши ученые создали принципиально новую технологию автомобильного поршневого двигателя, не имеющего аналогов в мире. В основу разработки положено открытое группой ученых во главе с членом-корреспондентом РАН Ю. Васильевым и профессором Ю. Свиридовым явление так называемого С-процесса — молекулярного смесеобразования со стопроцентным испарением бензина. В двигатель поступает сухая безвоздушная газовая смесь (бензогаз), которая сгорает полностью и быстро. Выхлоп такого двигателя экологически чист.

    Заметного сокращения расхода энергии, а значит, количества сжигаемого топлива и уменьшения загрязнения воздушной среды, можно достичь, если использовать энергию, затрачиваемую на торможение. Указанная рекуперация была впервые успешно реализована на электрическом транспорте. Ныне построены и успешно используются в автобусах маховичный и гидропневматический рекуператоры. При этом экономия топлива составила 27-40 %, объем выхлопных газов снизился на 39-49 %.

    Совершенствование дизельных двигателей. Как известно, в бензиновом двигателе рабочая (топливно-воздушная смесь) воспламеняется от постороннего источника; в дизельном — под действием температуры, повышающейся при сжатии смеси.

    В последние годы во всем мире наблюдается тенденция возврата к дизельным двигателям. И этому есть веские причины. Во-первых, потребление топлива дизелем на 20—30 % меньше. Во-вторых, токсичность выхлопных газов (по сумме вредных компонентов) примерно в три раза ниже, чем у бензиновых двигателей.

    Однако применение и дизелей не свободно от экологических проблем, поскольку в процессе работы выбрасываются твердые и газообразные вещества: несгоревшее топливо, сажа, аэрозоли масла, диоксид серы и т. д. Поэтому для очистки выхлопных газов на дизелях устанавливают перед окислительным нейтрализатором сажевый фильтр. Очистка выхлопных газов от сажи происходит при их прохождении через пористые стенки из одного канала в другой. Успехи в области создания жаропрочной (-1400 °С) и ударопрочной керамики позволяют применять такие материалы в газотурбинных и так называемых адиабатических дизельных двигателях. Большая теплоемкость керамики позволяет отказаться от водяного охлаждения. Тем самым эффективность использования топлива в таких двигателях повышается на 30-35 % , соответственно возрастает и экологичность.

    Представляет большой интерес использование смеси дизельного топлива и природного газа на автобусах «Икарус». У них почти в 4 раза меньше объем выхлопных газов, на 10 % повышена мощность двигателя, время работы между ремонтами увеличено в 1,5 раза, и одновременно вдвое снижен расход дизельного топлива.

    Для уменьшения загрязнения атмосферного воздуха отработанными газами необходим повседневный технический контроль состояния автомобиля. Все автохозяйства обязаны следить за исправностью машин, выпускаемых на линию. Низкий уровень технического обслуживания, отсутствие контроля приводят к расстройству узлов и систем автомобиля, и выбросы вредных веществ в атмосферный воздух возрастают. В результате все усилия автомобильной промышленности по совершенствованию двигателей для обеспечения требований экологических стандартов сводятся на нет. Поэтому сегодня особенно актуальной становится задача не только и не столько совершенствовать конструкции автомобилей с точки зрения ограничения токсичности, сколько повышать уровень технического обслуживания и совершенствовать контроль за их техническим состоянием.

    Результаты Всероссийской операции «Чистый воздух», ежегодно проводимой в крупных городах, показали, что из-за неисправностей или неправильных регулировок систем питания и зажигания ДВС экологическим нормам не соответствует 25-30 % автомобилей, а выбросы вредных веществ отечественных автомобилей примерно в 2 раза выше аналогичного показателя в Германии. Ненадлежащее техническое состояние подвижного состава и автодорог не способствует энергосбережению на автотранспорте и в конечном итоге его экологической безопасности.

    Улучшение качества топлива. Большинство (до 75 %) применяемых ныне в России сортов бензина содержит в качестве антидетонационной присадки тетраэтилсвинец РЬ(С2Н6)4 в количестве 0,41-0,82 г/л. Однако ее наличие приводит к тому, что свыше 60 % загрязнений почвы свинцом приходится на автотранспорт. Поэтому большое значение имеет запрещение применения этилированного бензина. В большинстве стран Европы он уже не используется.

    Прекращено производство этилированного бензина на нефтеперерабатывающем предприятии Москвы, расположенном в Капотне, а также на некоторых других предприятиях России.

    В то же время следует отметить, что добавлением к топливу определенных присадок можно снизить образование оксида углерода (II), углеводородов, альдегидов, сажи и др. Так, в Финляндии разработана добавка к бензину «Футура», которая не содержит свинца. Бензин с присадкой «Футура» имеет октановое число 95; она эффективно очищает двигатель, уменьшает загрязнение клапанов, защищает топливную систему от коррозии, повышает морозостойкость карбюратора, обеспечивает равномерный режим сгорания топлива и уменьшает выбросы вредных веществ. Из отечественных разработок следует отметить антидетонационную присадку на марганцевой основе ЦТМ, которая в 50 раз менее токсична, чем тетраэтилсвинец. Добавка 2 % ЦТМ существенно повышает октановое число бензина. В поисках эффективных присадок очень плодотворно международное сотрудничество. Так, российские ученые совместно со специалистами из нидерландской компании Ай-Си-Ди создали фетерол — высокооктановую добавку к бензину, делающую его экологически почти безвредным, полностью соответствующим зарубежным и отечественным санитарным нормам. Производство такого бензина освоено на ряде российских заводов. АО «Омский каучук» наладило выпуск метилтретичнобутилового эфира (МТБЭ) — добавки к бензинам, существенно улучшающей их качество и эко-логичность. Его применение снижает содержание в выхлопных газах оксида углерода (угарного газа) на 10-20 %, несгоревших углеводородов — на 5-10 % и вредных летучих соединений — на 13—17 %. Отметим, как важное, достоинство МТБЭ: он обладает высоким октановым числом — 110 единиц.

    Разработано большое число присадок и к дизельному топливу, снижающих содержание сажи в выхлопных газах. Наиболее эффективными оказались барийсодержащие присадки. Сравнительные их испытания показали, что добавление к топливу 1 % (по объему) присадки А2 (разработана в СССР) снижает концен трацию сажи в выхлопных газах при всех режимах работы двигателя примерно на 70-90 %. При этом уменьшается также на 60-80 % выброс канцерогенных веществ.

    Большое внимание уделяется выпуску новых сортов автомобильного топлива. Начиная с 1996 г., производятся поставки на автозаправочные станции новой марки бензина «Евросупер-95» с Новоуфимского нефтеперерабатывающего завода. Он отличается не только высоким октановым числом, но и предельно малым содержанием вредных сероводородных соединений. «Евросупер-95» вырабатывается по современным высоким технологиям без тет-раэтилсвинца и других вредных для ОС и человека добавок. В Сибирском отделении Российской академии наук (РАН) разработана установка для получения высокооктанового бензина из углеродного сырья различного происхождения. С помощью специального катализатора на этой установке осуществляется получение чистых высокооктановых фракций без каких-либо добавок. Сырьем служат попутный газ и газовый конденсат, который образуется при добыче нефти, и другие углеводородные соединения.

    На Западно-Сибирском металлургическом комбинате нашли способ превращения в высокооктановый бензин компонентов доменных и коксовых газов, выбрасываемых в атмосферу. Возможно также превращать в бензин компоненты газов, сжигаемых на заводах синтетического каучука.

    В России найден способ изготовления порошкового бензина. По качеству он соответствует Аи-92 и Аи-76, но с более низким содержанием оксида углерода в выхлопе.

    Перевод автомобилей на природный газ. По экспериментальным оценкам, использование газового топлива снижает выбросы оксида углерода в 2-4 раза, оксидов азота — в 1,1—1,5 и суммарных углеводородов — в 1,4-2 раза. Природный газ хорошо смешивается с воздухом, полнее сгорает в двигателе, не содержит практически серы, свинца и других нежелательных примесей. В отличие от бензина газ не нарушает масляную пленку между трущимися деталями и они меньше изнашиваются, что продлевает эксплуатацию двигателя. Наконец, газовое топливо не требует различных присадок. Октановое число у него достигает 110, в то время как у высокосортного бензина 96. Согласно Ю. В. Новикову (1998), перевод автомашин на газовое топливо позволит почти в 100 раз снизить выбросы в атмосферу канцерогенных веществ. Сократится и расход нефтепродуктов: каждая тысяча газобаллонных автомобилей сэкономит на грузовых перевозках 12 тыс. т, на таксомоторных — 6 тыс. т, на пассажирских (автобусах) — 30 тыс. т в год. Значительно сократятся затраты и на охрану ОС. Если учесть, что газ дешевле бензина, то достоинства газобаллонного автомобиля становятся еще более наглядными.

    Сейчас из почти 800 млн автомашин, эксплуатируемых в мире, более 10 млн работают на природном газе. Наиболее активно переводятся на природный газ автомобили в Канаде, Италии и США. Их эксплуатация показала, что в выхлопных газах резко снижается содержание сажи, оксида углерода (II) и многих вредных органических соединений.

    Для России, обладающей крупнейшими запасами природного газа и являющейся мировым лидером по его добыче, повсеместный перевод автомобилей на газ — не только способствовал бы снижению вредных выбросов (минимум на 10—20 %), но и оказался бы экономически оправданным мероприятием. Согласно расчетам специалистов, при переводе на сжиженный природный газ доля топлива в общих эксплуатационных затратах на автомобиль сокращаемся вдвое, быстро окупаются затраты на приобретение газобаллонного оборудования и его установку (в течение полугода окупаются затраты при переводе на газ грузовых автомобилей моделей «ГАЗ» и «ЗИЛ», в течение года автобусов «Ика-рус-280» и в течение 14 месяцев — автомобилей «КамАЗ-5320»).

    В то же время отмечаются и существенные недостатки газового топлива: 1) необходимость установки на автомобиле баллонов для сжиженного газа (с давлением 1,6 МПа); 2) опасность растекания смеси (она тяжелее воздуха) в салоне автомобиля, гараже и т. д., что может привести к взрыву; 3) необходимость создания разветвленной сети автомобильных газонаполнительных компрессорных станций, время заправки на которых одного автомобиля составляет 10—15 мин.

    Санитарно-технические мероприятия. К таковым относится прежде всего установка каталитических нейтрализаторов. Они используются для обезвреживания выхлопных газов автомобиля путем химического превращения отдельных вредных веществ, содержащихся в них, при помощи катализаторов.

    Каталитические нейтрализаторы конструктивно состоят из входного 1 и выходного 2 патрубков, корпуса 3 и заключенного в него реактора 4, представляющего собой слой гранулированного или канального катализатора 5(рис 9.7).



    Канальный катализатор изготовляется, как правило, из керамики или металла и имеет сотовую структуру. Поверхность катализатора, несмотря на малые размеры, имеет рабочую площадь порядка 3 м2. На эту поверхность нанесен слой платины с небольшой добавкой родия или палладия. Сотовые каналы проходят в продольном направлении.

    По характеру осуществляемой в нейтрализаторах реакции они подразделяются на окислительные (называемые также дожигателями), восстановительные и бифункциональные. В окислительных нейтрализаторах при 250-800 °С происходит окисление продуктов неполного сгорания — оксида углерода и углеводородов:



    Первые каталитические конверторы, использующие окисляющий катализатор, были установлены на моделях американских автомобилей, выпускаемых с 1975 г. Активный катализатор представлял собой благородный металл (например, Pd, Pt) или смесь оксидов металлов типа Fe203/Cr203 и СоО/Сг203 на инертном носителе. Карбюратор, используемый в этой системе, создавал «обогащенную» смесь, что приводило к выбросу несгорев-ших углеводородов из первичной камеры сгорания. Этот избыток углеводородов затем окислялся катализатором при более низкой температуре и дополнительном пропускании воздуха, что минимизировало также и образование NOx.



    восстановления оксидов азота в нейтрализаторе будут протекать достаточно полно:
    В восстановительных нейтрализаторах (выпускаются с 1981 г.) для глубокого восстановления оксидов азота необходимо, чтобы газ, поступающий в реактор, был слабо восстановительным или близким к нейтральному. В этом случае реакции восстановления оксидов азота в



    Наиболее современные разработки представляют собой двойную бифункциональные катализаторы) систему, работающую с почти полным соблюдением стехиометрического отношения топливо/воздух)

    восстановительный катализатор (восстанавливает NOx до N2); 2) подача воздуха; 3) окислительный катализатор для окисления остаточных углеводородов и СО.

    Испытания отечественных катализаторов показали, что они снижают уровень СО в отработанных газах на 80 %, CnHm — на 70 %, N0 — на 50 %. В целом токсичность выброса уменьшается в 10 раз.

    Предпринятые поиски других, более дешевых и доступных катализаторов привели к выводу, что в известной степени платину могут заменить палладий, рутений, а также оксиды меди, хрома, никеля, диоксид марганца.

    В нейтрализаторах российского производства часто используется оксид алюминия. Как и в термореакторе, процесс окисления СО и CnHm требует подачи дополнительного воздуха, а процесс восстановления оксида азота (NO) не требует подачи воздуха. Современные каталитические нейтрализаторы выполняются в виде двухкамерного реактора: в одной камере осуществляется окисление СО и CnHm, а во второй восстановление NO. Нейтрализаторы этого типа применяются на автомобилях с бензиновыми и дизельными двигателями.

    3.6 Мероприятия по охране почв

    Необходимо рекультивировать брошенные участки дорог, временные строительно-технологические проездовы и территории, занимаемые под строительные площади.

    Планируется снятие растительного слоя, его складирование, сохранение и последующее использование для рекультивации и при укреплении откосов. Для обеспечения противоэрозионной устойчивости откосов предусмотрен посев трав из расчета 20 кг на гектар. Для укрепления крутых откосов предусмотрено использование геосинтетических материалов.

    Отчуждение земель. Для размещения транспортных коммуникаций нужны земля, вода, воздух, подчас огромных площадей и объемов. Подсчитано (Н. Н. Родзевич, 2003 г.), что в СП площадь земель, на которых размещены автомагистрали, желе» ные дороги и аэродромы, составляет 101 тыс. км2, а площади городов — 109 тыс. км2. Автодороги занимают около 2 % территории Великобритании, 6 % — Японии и Бельгии. В Россини протяженность автодорог превысила 0,5 млн км. Под железные дороги страны отведено около 10 тыс. км2.

    Почворазрушающие процессы и деградация. При строительстве и эксплуатации дорог происходят почворазрушающие процессы: оползни, просадки и эрозия. Причем часто развивается особый вид последней — дорожная эрозия, происходящая в результате размыва и разрушения почв. Из-за этого возникают группы оврагов по колеям грунтовых дорог. Чтобы избежать размыва в кюветах, необходимо сохранять в них травянистый покров, а также сооружать бетонные лотки.

    Наиболее опасны дороги, проложенные в тундре с ранимым и трудно восстанавливаемым растительным покровом. Колея летом заполняется водой и при наличии уклонов превращается в промоины, которые в конце концов трансформируются в овраги. Этот вид термокарста называется дорожно-колейным.

    Природные комплексы, расположенные вблизи насыпей железных и шоссейных дорог, постепенно трансформируются и деградируют. Например, вдоль дорог возникают заболоченные участки, достигающие сотен метров в ширину. В них в определенное время года развиваются болезнетворные микроорганизмы и, в перспективе, очаги массовых инфекций.

    Ухудшение агрохимического качества почвы и приземного слоя воздуха. Известно, что вдоль автотрасс, железных дорог и выходящих на поверхность нефте-газотрубопроводов земля на большой площади загрязняется соединениями свинца, серы, нефтепродуктами и другими веществами. Особенно опасна придорожная полоса шириной до 200 м по обе стороны вдоль наиболее напряженных магистралей. Замечено, например, что вдоль кольцевой автомагистрали вокруг Москвы быстро погибают посаженные деревья. Категорически запрещается выращивать сельхозпродукцию вдоль дорог, собирать грибы, ягоды, пасти скот, особенно молочный (известны случаи отравления детей молоком коров, пасшихся вокруг дорог).

    Утилизация отходов автотранспортных средств

    Отходы автотранспортных средств обширны и разнообразны: это сами автомобили, отслужившие свой срок («по старости» или в результате аварии), шины, аккумуляторы, агрегатные узлы и др. Да и сам автомобиль представляет собой немалую ценность, в нем черные и цветные металлы составляют 71 и 3,4 % соответственно, полимерные материалы 8,5 %, каучук — 4,7 %, стекло — 4 %, бумага и картон — 0,5 %, прочие материалы — 7,8 % (Н. И. Иванов, И. М. Фадин, 2002 г.). В табл. 9.8, например, представлены данные об образовании изношенных шин ежегодно в различных странах.

    Нет нужды говорить о том огромном вреде, который наносят вышедший из эксплуатации автомобиль, его составные части, выброшенные на свалку или разбросанные по поверхности земли, а иногда и затопленные.















    Литература


    1. Материалы инженерно-геологических изысканий по транспортной развязке на пересечении КАД с Приморским шоссе и железной дорогой. СПб., - 1999. – ГП «Трест ГРИИ».

    2. Методика определения выбросов автотранспорта для проведения сводных расчетов загрязнения городов (Утверждена приказом Госкомэкологии России № 66 от 16 февраля 1999 г.). – СПб.: НИИ Атмосфера. –16 с.

    3. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий (ОНД – 86). – Л. Гидрометеоиздат. – 1987.

    4. Отчет о НИР «Измерение шумового фона в поселке Горская в зоне строительства транспортной развязки», рег. №2617).СПБ Гос. Университет путей сообщения, - 1999. – 9 с.

    5. Отчет по теме «Расчет прогнозируемых уровней шума, эффективности шумозащитных мероприятий и измерение концентраций диоксида азота в зоне строительства транспортной развязки в пос. Горская». СПб.: НТЦ «Экология». Руководитель – Н.И. Иванов. – 1999. – 14 с.

    6. Проектирование автомобильных дорог. Сборник научных трудов. Москва, МАДИ

    7. Рекомендации по учету требований по охране окружающей среды при проектировании автомобильных дорог и мостовых переходов. (Согласованы с Министерством охраны окружающей среды и природных ресурсов РФ 19.06.1995 №03-19/АА). М. 1995. –124 с.

    8. Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки (СН 2.2.42.1.8.562-96).

    9. Шум. Транспортные потоки. Методы измерения шумовой характеристики. ГОСТ 20444-85. –М.: Изд-во стандартов. – 21 с.

    10. Экологическая безопасность транспортных потоков (под ред. А.Б.Дьякова) – М. Транспорт. 1989.  – 127 с.
    1   2   3


    написать администратору сайта