Главная страница

Ответы на гистологию. Вопросы к экзамену по гистологии Цитилогия


Скачать 0.83 Mb.
НазваниеВопросы к экзамену по гистологии Цитилогия
АнкорОтветы на гистологию
Дата26.01.2020
Размер0.83 Mb.
Формат файлаdoc
Имя файлаOtvety.doc
ТипВопросы к экзамену
#105886
страница11 из 19
1   ...   7   8   9   10   11   12   13   14   ...   19

4Морфофункциональная характеристика В-лимфоцитов и плазматических клеток. Их участие в иммунных реакциях. Дифференцировка В-лимфоцитов. В-лимфоциты отличаются от других типов клеток способностью синте­зировать иммуноглобулины. Зрелые В-лимфоциты экспрессируют Ig на кле­точной мембране. Такие мембранные иммуноглобулины функциони­руют как антигенспецифические рецепторы. Пре-В-клетки синтезируют внутриклеточный цитоплазматический IgM, но не имеют поверхностных иммуноглобулиновых рецепторов. Костномозговые виргильные В-лимфоциты имеют IgM-рецепторы на своей поверхности. Зрелые В-лимфоциты несут на своей поверх­ности иммуноглобулиновые рецепторы различных классов — IgM, IgG и др. Дифференцированные В-лимфоциты поступают в периферические лимфоидные органы, где при действии антигенов происходят пролиферация и дальнейшая специализация В-лимфоцитов с образованием плазмоцитов и В-клеток памяти. В ходе своего развития многие В-клетки переключаются с выработки антител одного класса на выработку антител других классов. Этот процесс называется переключением класса. Все В-клетки начинают свою деятельность по синтезу антител с выработки молекул IgM, которые встраиваются в плазматическую мембрану и служат рецепторами для анти­гена. Затем, еще до взаимодействия с антигеном, большая часть В-клеток переходит к одновременному синтезу молекул IgM и IgD. Когда виргильная В-клетка переходит от выработки одного лишь мембраносвязанного IgM к одновременному синтезу мембраносвязанных IgM и IgD, переключение происходит, вероятно, благодаря изменению процессинга РНК. При стимуляции антигеном некоторые из этих клеток активируются и начинают выделять антитела IgM, преобладающие в первичном гумораль­ном ответе. Другие стимулированные антигеном клетки переключаются на выработ­ку антител классов IgG, IgE или IgA; В-клетки памяти несут эти антитела на своей поверхности, а активные В-клетки их секретируют. Молекулы IgG, IgE и IgA в совокупности называются антителами вторичных классов, так как они, по-видимому, образуются только после антигенной стимуляции и преобладают во вторичных гуморальных ответах. При помощи моноклональных антител удалось выявить определенные дифференцировочные антигены, которые еще до появления цитоплазматических цепей позволяют отнести несущий их лимфоцит к В-клеточной линии. Он присутствует на пре-В-клетках в костном мозге, на всех периферических В-клетках. Дифференцировка клеток плазматического ряда

Этот процесс проходит в несколько этапов и продолжается в течение суток. Из стимулированных В-лимфоцитов образуются В-лимфобласты, ко­торые размножаются, часть из них приобретает способность к синтезу ан­тител и становится плазмобластами, превращающимися в последующем в проплазмоциты и плазмоциты. Плазмобласт— крупная клетка, характеризуется нали­чием большого количества рибосом и небольшим числом уплощенных ци­стерн гранулярной эндоплазматической сети. Ядро содержит деконденсиро-ванный хроматин и 1—2 больших ядрышка. Проплазмоцит характеризуется меньшим размером тела клеток, увели­чением количества концентрически расположенных узких канальцев грану­лярной эндоплазматической сети. Ядро лежит эксцентрично, хроматин бо­лее компактный, расположен группами около ядерной мембраны (имеет вид спиц колеса). Около ядра видна зона более светлой цитоплазмы, в ко­торой расположен увеличенный аппарат Гольджи. Плазмоцит характеризуется появлением большого коли­чества расширенных цистерн гранулярной эндоплазматической сети, запол­ненных продуцируемыми клеткой иммуноглобулинами. Ядро компактное, расположенное эксцентрично. Процесс плазмоцитогенеза сопровождается потерей способности клеток к делению и движению и уменьшением количества поверхностных иммуногло­булинов в цитолемме. Продолжительность жизни плазмоцитов составляет не­сколько недель. Лимфобласты и незрелые плазматические клетки из лимфати­ческих узлов, где они образуются, способны проникать в выносящие лимфа­тические сосуды и заселять соседние лимфатические узлы. Часть образованных из них мелких клеток, напоминающих по виду лимфоциты, проникает в кро­веносные сосуды. Они имеют центрально расположенное ядро, окруженное узким ободком цитоплазмы, в которой видна развитая гранулярная эндоплаз-матическая сеть. Эти клетки получили название лимфоплазмоцитов. Синтез иммуноглобулинов (антител) происходит при участии инфор­мационной РНК на рибосомах гранулярной эндоплазматической сети В-лимфоцитов и образуемых из них плазмоцитов. Синтезированные моле­кулы поступают в просвет цистерн. В В-лимфоцитах первые антитела выяв­ляются в перинуклеарных цистернах. В процессе дальнейшей дифференци­ровки плазмоцитов антитела находятся во всех цистернах гранулярной эн­доплазматической сети плазмоцитах антитела в перинуклеарных пространствах отсут­ствуют и исчезают из некоторых цистерн гранулярной сети. К полипептид­ным частям тяжелых цепей антител присоединяются углеводы (N-ацетил-глюкозамин), и этот комплекс транспортируется в аппарат Гольджи, где и происходит присоединение дополнительных углеводов (галактоза). Из плас­тинчатого аппарата антитела переносятся на поверхность клетки и выделя­ются. Наиболее раннее выделение антител на месте действия антигена осу­ществляется лимфоцитами. Плазмоциты начинают секретировать антитела несколько позднее, но в гораздо большем количестве. Одна плазматическая клетка может продуцировать 3000 молекул антител в сутки. Часть иммуно­глобулинов может депонироваться в растянутых цистернах гранулярной эн­доплазматической сети

5. Роль макрофагов и тучных кл. в иммунных реакциях.

Фагоцитоз. Фаголизосома. Накопление антигенов. Появление антигенов на мембране макрофагов. Активация пролиферации и дифференцировки Т- и В-лимфоцитов. Хранение информации об антигене.

Роль тучных клеток: При первичном и особенно при вторичном введении антигенов наблюдается увелечение числа тучных клеток, их контакт с макрофагами и массовая денатурация. Высказывается предположение, что денатурация обусло

влена соединением антигена с антителами, фиксированными на цитолемме. При этом выделяются содержащиеся в гранулах БАВ (гистамин, серотонин, гепарин), которые могут оказывать неспецифическое стимулирующее влияние на процессы пролиферации и дифференцировки иммунокомпитентных клеток Т и В лимфоцитов.

Органы нервной системы

1. Периферическая нервная ситема. Периферические нервы, их строение и регенерация. Спинномозговые ганглии, морфо-функциональная характеристика.

Периферическая НС (периферические нервные стволы, нервы, ганглии, нервные окончания, нервные узлы). переф. нервы состоят из миелиновых и безмиелиновых волокон и соед. тканных оболочек. наруж. оболочка – эпиневрий, плотная волокнисто соед ткань богатая фибрилобластами,макрофагамиижир.кл.
СПИННОМОЗГОВЫЕ УЗЛЫ (СПИНАЛЬНЫЕ ГАНГЛИИ) - закладываются в эмбриональном периоде из ганглиозной пластинки (нейроциты и глиальные элементы) и мезенхимы (микроглиоциты,капсула и соединительной дткани прослойки).
Спинномозговые узлы (СМУ) расположены по ходу задних корешков спинного мозга. Снаружи покрыты сдт капсулой, от капсулы внутрь отходят прослойки-перегородки из рыхлой сдт с кровеносными сосудами. Под капсулой группами располагаются тела нейроцитов. Нейроциты СМУ крупные, диаметр тел до 120 мкм. Ядра нейроцитов крупные, с четкими ядрышками, располагаются в центре клетки; в ядрах преобладает эухроматин. Тела нейроцитов окружены клетками сателлитами или мантийными клетками - разновидность олигодендроглиоцитов. Нейроциты СМУ по строению псевдоуниполярные - аксон и дендрит отходят от тела клетки вместе как один отросток, далее Т-образно расходятся. Дендрит идет на периферию и образует в коже, в толще сухожилий и мышц, во внутренних органах чувствительные рецепторные окончания, воспринимающие болевые, температурные, тактильные раздражители, т.е. нейроциты СМУ по функции чувствительные. Аксоны по заднему корешку поступают в спинной мозг и передают импульсы на ассоциативные нейроциты спинного мозга. В центральной части СМУ располагаются параллельно друг другу нервные волокна, покрытые леммоцитами.



2. Спинной мозг. Развитие. морфо-функциональная характеристика. серого и белого вещ-ва. Нейронный состав, глиоциты.

СПИННОЙ МОЗГ (СМ)развивается из нервной трубки, образуя нейроны, группирующиеся в 10 слоев или в пластиках Рекседа состоит из 2-х симметричных половин, разделенных спереди глубокой щелью, а сзади спайкой. На поперечном срезе хорошо видно серое и белое вещество. Серое вещество СМ на срезе имеет форму бабочки или буквы "H" и имеет рога - передние, задние и боковые рога. Серое вещество СМ состоит из тел нейроцитов, нервных волокон и нейроглии.
Обилие нейроцитов обуславливает серый цвет серого вещества СМ. По морфологии нейроциты СМ в своем подавляющем большинстве мультиполярные. Нейроциты в сером веществе окружены спутанными как войлок нервными волокнами - нейропилью. Аксоны в нейропиле слабомиелинизированы, а дендриты и вовсе не миелинизированы. Сходные по размерам, тонкому строению и функциям нейроциты СМ располагаются группами и образуют ядра.
Среди нейроцитов СМ различают следующие типы:
1. Корешковые нейроциты - располагаются в ядрах передних рогов, по функции являются двигательными; аксоны корешковых нейроцитов в составе передних корешков покидают СМ , проводят к скелетной мускулатуре двигательные импульсы.
2. Внутренние клетки - отростки этих клеток не покидают пределы серого вещества СМ, оканчиваются в пределах данного сегмента или соседнего сегмента, т.е. по функции являются ассоциативными.
3. Пучковые клетки - отростки этих клеток образуют нервные пучки белого вещества и направляются в соседние сегменты или вышележащие отделы НС, т.е. по функции тоже являются ассоциативными.
Задние рога СМ более короткие, узкие и содержат следующие виды нейроцитов:
а) пучковые нейроциты - располагаются диффузно, получают чувствительные импульсы от нейроцитов спинальных ганглиев и передают по восходящим путям белого вещества в вышележащие отделы НС (в мозжечок, в кору больших полушарий);
б) внутренние нейроциты - передают чувствительные импульсы со спинальных ганглиев в двигательные нейроциты передних рогов и в соседние сегменты.
В задних рогах СМ имеются 3 зоны:
1. Губчатое вещество - состоит из мелких пучковых нейроцитов и глиоцитов.
2. Желатинозное вещество - содержит большое количество глиоцитов, нейроцитов практически не имеет.
3. Собственное ядро СМ - состоит из пучковых нейроцитов, передающих импульсы в мозжечок и зрительный бугор.
4. Ядро Кларка (Грудное ядро) - состоит из пучковых нейроцитов, аксоны которых в составе боковых канатиков направляются в мозжечок.
В боковых рогах (промежуточная зона) имеются 2 медиальные промежуточные ядра и латеральное ядро. Аксоны пучковых ассоциативных нейроцитов медиальных промежуточных ядер передают импульсы в мозжечок.. Латеральное ядро боковых рогов в грудном и поясничном отделе СМ является центральным ядром симпатического отдела вегетативной НС; аксоны нейроцитов этих ядер идут в составе передних корешков СМ как преганглионарные волокна и оканчиваются на нейроцитах симпатического ствола (превертебральные и паравертебральные симпатические ганглии). Латеральное ядро в сакральном отделе СМ является центральным ядром парасимпатического отдела вегетативной НС.
Передние рога СМ содержат большое количество мотонейронов (двигательных нейронов), образующие 2 группы ядер:
1. Медиальная группа ядер - иннервирует мышцы туловища.
2. Латеральная группа ядер хорошо выражена в области шейного и поясничного утолщения - иннервирует мышцы конечностей.
По функции среди мотонейронов передних рогов СМ различают:
1. -мотонейроны большие - имеют диаметр до 140 мкм, передают импульсы на экстрафузальные мышечные волокна и обеспечивают быстрое сокращение мышц.
2. -мотонейроны малые - поддерживают тонус скелетной мускулатуры.
3. -мотонейроны - передают импульсы интрафузальным мышечным волокнам (в составе нервно-мышечного веретена).
-мотонейроны - это интегративная единица СМ, они испытывают влияние и возбуждающих и тормозных импульсов. До 50% поверхности тела и дендритов мотонейрона покрыты синапсами. Среднее число синапсов на 1 мотонейроне СМ человека составляет 25-35 тысяч. Одномоментно на 1 мотонейрон могут передавать импульсы с тысячи синапсов идущие от нейронов спинального и супраспинальных уровней.
Возможно и возвратное торможение мотонейронов благодаря тому, что ветвь аксона мотонейрона передает импульс на тормозные клетки Реншоу, а аксоны клеток Реншоу оканчиваются на теле мотонейрона тормозными синапсами.
Аксоны мотонейронов выходят из СМ в составе передних корешков, достигают скелетных мышц, заканчиваются на каждой мышечной волокне моторной бляшкой.
Белое вещество СМ состоит из продольно ориентированных преимущественно миелиновых нервных волокон, образующие задние (восходящие), передние (нисходящие) и боковые (и восходящие и нисходящие) канатики, а также из глиальных элементов.


3. Головной мозг. Развитие. Морфо-функциональная характеристика коры больших полушарий. Цитоархитектоника и миелоархитектоника коры больших полушарий. Гранулярный и агранулярный типы коры.

В головном мозге различают серое и белое вещество. Серое вещество располагается на поверхности большого мозга и мозжечка, образуя их кору. Меньшая часть образует ядра ствола мозга. Развивается из нервной трубки. Из ее краниального отдела дифференцируется головной мозг. КОРА БОЛЬШИХ ПОЛУШАРИЙ (КБШ)является местом анализаисинтеза нервных импульсов, обеспечивает память.

Кора большого мозга представлена слоем серого вещества толщиной 3-5 мм.. В ней содержится около 10-14 млрд. нервных клеток. Для коры характерно расположение клеток и волокон слоями. Все нейроциты коры по морфологии мультиполярные. Среди них по форме различают звездчатые, пирамидные, веретеновидные, паукообразные и горизонтальные клетки. Пирамидные нейроциты имеют тело треугольной или пирамидной формы, диаметр тела 10-150 мкм (малые, средние, крупные и гигантские). От основания пирамидной клетки отходит аксон, участвующий при формировании нисходящих пирамидных путей, ассоциативных и комиссуральных пучков, т.е. пирамидные клетки являются эфферентными нейроцитами коры. От вершины и боковых поверхностей треугольного тела нейроцитов отходят длинные дендриты. Дендриты имеют шипики - места синаптических контактов. У одной клетки таких шипиков может быть до 4-6 тысяч.
Звездчатые нейроциты имеют форму звезды; дендриты отходят от тела во все стороны, короткие и без шипиков. Звездчатые клетки являются главными воспринимающими сенсорными элементами коры больших полушарий и основная их масса располагается во 2-ом и 4-ом слое.


Цитоархитектоника отличие разных участков коры друг от друга некоторыми особенностями расположения и строения клеток.

Различают 6 основных слоев коры, каждый из которых характеризуется преобладанием какого-либо одного вида клеток.

1.Молекулярный слой содержит мелкие веретеновидные нейроциты. Их нейриты проходят параллельно поверхности мозга в составе тангециального сплетения молекулярного слоя, имеется небольшое количество веретеновидных ассоциативных нейроцитов.

2. Наружный зернистый содержит мелкие нейроциты, имеющие округлую, угловатую, пирамидную, звездчатую формы. Дендриты поднимаются в молекулярный слой, а нейриты в белое вещество.

3.Пирамидный слой, самый широкий, состоит из средних и крупных пирамидных клеток. Величина пирамидных клеток увеличивается от наружного слоя этой зоны к внутреннему. Многочисленная группа мелких, разной формы нейроцитов. Аксоны идут в белое вещ-во и в виде ассоциативных пучков направляются в другие извилины данного полушария или в виде комиссуральных пучков в противоположное полушарие.

4.Внутренний зернистый слой образован мелкими звездчатыми нейронами. В его состав входит большое количество ассоциативных горизонтальных волокон.

5.Ганглионарный слой образован гигантские, крупными пирамидными клетками (клетки Беца). Аксоны этих клеток направляются в белое вещество и образуют нисходящие проекционные пирамидные пути, также комиссуральные пучки в противоположное полушарие. В отличие от др. пирамидных клеток эти характеризуются наличием крупных глыбок хроматофильного вещества. Нейриты клеток этого слоя образуют главную часть кортикоспинальных и кортиконуклеарных путей и оканчиваются синапсами на клетках моторных ядер.
6.Слой полиморфных клеток многочисленная группа мелких, разной, преимущественно веретенообразной формы нейроцитов. Внешняя зона содержит более крупные клетки, а во внутренней мельче и лежат на большом расстоянии друг от друга. Нейриты клеток уходят в белое вещество.

Миелоархитектоника – особенности расположения нервных волокон в составе полей коры.

Среди нервных волокон коры полушарий большого мозга можно выделить:

ассоциативные волокна, связывающие отдельные участки коры одного полушария;

комиссуральные, соединяющие кору различных полушарий;

проекционные, как афферентные, так и эфферентные, которые связывают кору с ядрами.

ТИПЫ КОРЫ

ГРАНУЛЯРНЫЙ ТИП КОРЫ – хорошо развиты второй и четвертый слои коры, в чувствительных корковых центрах, где заканчиваются афферентные проводники, идущие от органов обоняния, слуха, зрения

АГРАНУЛЯРНЫЙ ТИП КОРЫ – хорошо развиты третий, пятый и шестой слои. Из этих областей берут начало нисходящие проводящие пути ЦНС.

4. Мозжечок. Строение и функциональная характеристика. Нейронный состав коры мозжечка, глиоциты. Межнейронные связи.

МОЗЖЕЧОК - яв-ся центральным органом равновесия и координации движений. Различают серое и белое вещество мозжечка. Серое вещество представлено корой мозжечка и ядрами мозжечка (зубовидное, пробковидное и шарообразное).
В коре мозжечка имеется 3 слоя:
1. Наружный, молекулярный, слой - состоит из корзинчатых и звездчатых нейроцитов, по функции являющихся ассоциативными.
2. Средний, ганглионарный слой - состоит из 1 ряда грушевидных клеток Пуркинье. Это довольно крупные клетки - диаметр тела до 60 мкм. Дендриты, поднимаются в молекулярный слой и сильно разветвляясь, располагаются в 1-ой плоскости, а аксоны образуют эфферентные (выходящие) пути мозжечка и после переключения в ядрах мозжечка посылают импульсы через руброспинальный путь к мотонейронам спинного мозга.
3. Внутренний, зернистый слой - состоит из клеток зерен, больших звездчатых нейроцитов, веретеновидно-горизонтальных нейроцитов (все клетки по функции ассоциативные).
Афферентные волокна мозжечка:
1. Моховидные волокна - несут импульсы с моста и продолговатого мозга. Образуют синапсы на клетках зернистого слоя, а аксоны клеток зернистого слоя поднимаются в молекулярный слой и передают импульсы дендритам грушевидных клеток непосредственно или через клетки молекулярного слоя.
2. Лазящие волокна - несут импульсы со спинного мозга и с вестибулярного аппарата. Лазящие волокна не переключаются на вставочных клетках мозжечка, проходят транзитом через зернистый и ганглионарные слои в молекулярный слой и образуют там синапсы с дендритами грушевидных клеток Пуркинье.
Поступающая информация в коре мозжечка перерабатывается и на основе этого производится коррекция двигательных актов.
Эфферентные пути мозжечка начинаются с грушевидных клеток Пуркинье ганглионарного слоя. Аксоны этих клеток переключаются на клетках ядра мозжечка и через руброспинальный путь посылают импульсы мотонейронам спинного мозга.
Мозжечок сам не сохраняет память о двигательных актах, он только их регулирует, причем эта регуляция непроизвольная, неосознанная.
Клетки коры мозжечка очень чувствительны к действию интоксикации. Ярким примером этого является алкогольное опьянение. При алкогольном опьянении нарушение функций клеток мозжечка приводит к расстройству координации движений и равновесия.

1   ...   7   8   9   10   11   12   13   14   ...   19


написать администратору сайта