Главная страница

Информационная деятельность человека. Цифровая схемотехника (Пособие). Введение Данное учебное пособие предназначено для студентов высших,и средних учебных заведений


Скачать 4.11 Mb.
НазваниеВведение Данное учебное пособие предназначено для студентов высших,и средних учебных заведений
АнкорИнформационная деятельность человека
Дата05.02.2022
Размер4.11 Mb.
Формат файлаrtf
Имя файлаЦифровая схемотехника (Пособие).rtf
ТипУчебное пособие
#352476
страница9 из 13
1   ...   5   6   7   8   9   10   11   12   13

1.3.6. Логические элементы ИЛИ



Логическими элементами ИЛИ реализуется логическая сумма нескольких двоичных сигналов (и входных переменных). Функция, описывающая такие элементы, называется дизъюнкцией или функцией логического сложения. На рис.1.6 приведены условные обозначения (УГО) элементов ИЛИ и карты Карно описывающих их функций.





Рис.1.6. УГО логических элементов ИЛИ (а, в), булевы матрицы дизъюнкции двух (б) и трёх (г) аргументов




Алгебраическое выражение логической суммы двух переменных a и b записывается следующим образом

X = a  b = a+ b. (1.10)

В булевой алгебре для обозначения дизъюнкции используется символ . В технических же её приложениях обычно применяется знак + (арифметического сложения), но только тогда, когда это не приводит к некорректности при записи формул и логических выражений. (Преимущественно этот знак будет использоваться в дальнейшем для обозначения дизъюнкции.)

Как видно из карт рис.1.6,б и рис.1.6,г, функция логического сложения принимает значение лог.0 только в единственном случае, когда все аргументы принимают значение лог.0. Значение же лог.1 она имеет, если первый аргумент или второй, или третий и т.д., или все вместе аргументы принимают значение лог.1. Поэтому эту функцию называют функцией ИЛИ.

Так же, как и к конъюнкции многих переменных, к дизъюнкции применимы переместительный и сочетательный законы булевой алгебры. И следствием этого является логическая равнозначность входов у логических элементов ИЛИ, а также возможность построения многовходовых элементов ИЛИ из аналогичных элементов, но с меньшим числом входов. Если на рис.1.5 все элементы И заменить двухвходовыми элементами ИЛИ (2ИЛИ), то все выводы, сделанные относительно схем рис.1.5, будут справедливыми для схем, полученных такой заменой. Можно так же записать логико-математические модели для полученных схем и УГО элемента 6ИЛИ, заменив в выражениях (1.7), (1.8) и (1.9) все символы логического умножения знаками + (дизъюнкции).

В различных сериях ИМС имеются логические элементы ИЛИ. Например, в серии ТТЛ это микросхема К155ЛЛ1, она содержит 4 элемента 2ИЛИ.

1.3.7. Логические элементы И-НЕ



Эти элементы реализуют инверсию логического произведения входных сигналов. Другими словами, элементы И-НЕ описываются функцией «отрицания конъюнкции». В булевой алгебре такие функции называются функциями Шеффера, для их обозначения введён специальный символ « ∕ », называемый штрихом Шеффера. Для простоты чтения мы будем использовать для обозначения функций Шеффера символ инверсии (черта вверху) над выражением конъюнкции переменных. Например, алгебраическая форма записи функции Шеффера от двух аргументов будет иметь следующий вид:

X = a / b = = . (1.11)

В выражении (1.11) знаки равенства соответствуют логической тождественности выражений, причём правая часть выражения соответствует КСНФ функции И-НЕ (функция V13 в табл.1.3). А в целом выражение читается так: «инверсия логического произведения равна логической сумме инверсий аргументов». Это высказывание известно в булевой алгебре как закон де Моргана относительно инверсии логического произведения (инверсии конъюнкции). На рис.1.7 приведены условные графические обозначения элемента 2И-НЕ, его функциональная эквивалентная схема и карта Карно для рассматриваемой функции. Сравнивая карты Карно функций И и функций И-НЕ, нетрудно заметить, что в клетках стоят противоположные значения названных функций. Сопоставляя карты с алгебраическими выражениями функции И и функции И-НЕ, можно сделать следующие выводы:

  1. Каждой единице, стоящей в клетке матрицы, соответствует логическое произведение (конъюнкция) всех аргументов функции; взятых один раз со знаком либо без знака инверсии. Если клетка с единицей располагается на области единичных значений аргумента, то этот аргумент входит в конъюнкцию без инверсии. Если же клетка располагается на области нулевых значений аргумента, то этот аргумент входит со знаком инверсии.

  2. Каждому нулю, стоящему в клетке матрицы, соответствует логическая сумма (дизъюнкция) всех аргументов функции, взятых один раз со знаком либо без знака инверсии. Если клетка с нулём располагается на области единичных значений аргумента, то этот аргумент входит в дизъюнкцию со знаком инверсии. Если же клетка располагается на области нулевых значений аргумента, то этот аргумент входит без знака инверсии.

Эти выводы носят характер правил отыскания ДСНФ (первый вывод) и КСНФ (второй вывод) по булевым матрицам логических функций. Следует только добавить, что для отыскания ДСНФ функции необходимо эти элементарные конъюнкции «соединять» символами дизъюнкции (плюс), а при отыскании КСНФ функции элементарных дизъюнкций следует соединять символами конъюнкции.

П од элементарной конъюнкцией логических функций понимают логическое произведение всех аргументов функции, взятых один раз со знаком либо без знака инверсии.

П
Рис.1.7. Условные графические обозначения элементов И-НЕ: УГО элемента 2И-НЕ в положительной логике (а); карта Карно функции Х (б); функциональная эквивалентная схема элемента 2И-НЕ (в); УГО элемента 2И-НЕ в отрицательной логике (г); УГО элемента 3И-НЕ (д) и карта Карно трёхместной функции Шеффера (е)

од элементарной дизъюнкцией логических функций понимают логическую сумму всех аргументов функции, взятых один раз со знаком либо без знака инверсии.

В сериях микросхем есть элементы И-НЕ, различающиеся числом входов, количеством элементов в одной микросхеме, а также способом организации выхода. Например, микросхема К155ЛА3 содержит 4 элемента 2И-НЕ со стандартной нагрузочной способностью. Микросхема К155ЛА8 содержит один элемент 8И-НЕ с повышенной нагрузочной способностью (она равна 30, а стандартная нагрузочная способность равна 10).

Элемент 2И-НЕ является базовым для микросхем транзисторно-транзисторной логики (ТТЛ), т.е. этот элемент положен в основу построения всех названных микросхем и в том числе микросхем ТТЛш.

1   ...   5   6   7   8   9   10   11   12   13


написать администратору сайта