Главная страница

Информационная деятельность человека. Цифровая схемотехника (Пособие). Введение Данное учебное пособие предназначено для студентов высших,и средних учебных заведений


Скачать 4.11 Mb.
НазваниеВведение Данное учебное пособие предназначено для студентов высших,и средних учебных заведений
АнкорИнформационная деятельность человека
Дата05.02.2022
Размер4.11 Mb.
Формат файлаrtf
Имя файлаЦифровая схемотехника (Пособие).rtf
ТипУчебное пособие
#352476
страница10 из 13
1   ...   5   6   7   8   9   10   11   12   13

1.3.8. Элементы ИЛИ-НЕ



Функции, описывающие элемент 2ИЛИ-НЕ, в булевой алгебре называют функциями Пирса, для них введён специальный символ  (стрелка Пирса). В технических приложениях эти функции называют «инверсией логической суммы (дизъюнкции)» или просто функциями ИЛИ-НЕ. В частности, двухместная функция Пирса, функция 2ИЛИ-НЕ имеет следующие алгебраические выражения:

Z = a  b = = . (1.12)

В
Рис.1.8. Условные графические обозначения элементов ИЛИ-НЕ: УГО элемента 2ИЛИ-НЕ в положительной логике (а); карта Карно функции Z (б); функциональная эквивалентная схема элемента 2ИЛИ-НЕ (в); УГО элемента 2ИЛИ-НЕ в отрицательной логике (г); УГО элемента 3ИЛИ-НЕ (д) и карта Карно трёхместной функции Пирса (е)

дальнейшем эти функции будем обозначать символом инверсии над выражением логической суммы. Правая часть выражения (1.12) соответствует утверждению, что «инверсия логической суммы есть в то же самое время логическое произведение слагаемых, взятых с противоположными символами инверсии». Это утверждение является вторым законом де Моргана относительно инверсии дизъюнкции. Согласно выражению (1.12), элемент 2ИЛИ-НЕ можно представить условными графическими обозначениями при соглашениях положительной логики, при соглашениях отрицательной логики и функциональной эквивалентной схемой (рис.1.8).

В интегральном исполнении выпускаются логические элементы ИЛИ-НЕ с различным числом входов. Примером может служить микросхема К155ЛЕ1, содержащая 4 логических элементов 2ИЛИ-НЕ, или К155ЛЕ3 с двумя элементами 4ИЛИ-НЕ. Как и у элементов ИЛИ, так и у элементов ИЛИ-НЕ все входы логически равнозначны.

1.3.9. Элементы «ЗАПРЕТ»



Э ти двухвходовые элементы получили такое название потому, что сигнал по одному из входов «запрещает» либо «разрешает» прохождение на выход элемента сигнала, поданного на второй вход. Поэтому один вход называется входом запрета  он инверсный, а второй вход называют «информационным». Значения выходного сигнала совпадают со значениями входного информационного сигнала в состоянии разрешения, а в состоянии запрета выходной сигнал имеет значение лог.0 независимо от значения сигнала по информационному входу. В табл.1.3 показаны две функции запрета V1 (запрет b) и функция V4 (запрет а). На рис. 1.9 приведены УГО элемента «запрет а» (запрет по а), алгебраическое выражение и карта Карно функции с аналогичным названием и функциональная эквивалентная схема элемента.


Рис.1.9. Элемент ЗАПРЕТ: УГО (а), карта функции «запрет а» (б), эквивалентная схема (в)

При а = 0 значения функции Z совпадают со значением аргумента b.

Если а = 1 (состояние запрета) на выходе элемента будет постоянно сигнал лог.0. Таким образом, вход а является входом запрета, а вход b  информационным. Очевидно, такое же УГО будет соответствовать элементу «запрет b» только вход b будет инверсным, а вход а будет прямым. Аналогично в алгебраическом выражении такой функции аргумент b будет со знаком инверсии, аргумент же а войдёт без знака инверсии.

Следует отметить, что у элементов ЗАПРЕТ входы логически неравнозначны. Это в свою очередь означает, что сигналы по входам нельзя менять «местами».

Логические элементы ЗАПРЕТ выпускаются в интегральном исполнении, но не во всех сериях. Например, в серии К161 (на МОП-транзисторах с р-каналом) есть микросхема К161ЛП2, содержащая 4 элемента ЗАПРЕТ с общим входом запрета. На рис.1.9,а приведено условное графическое обозначение (УГО), соответствующее соглашениям положительной логики. Можно составить УГО при соглашениях отрицательной логики. Для этого над правой частью алгебраического выражения функции надо «взять» двойной знак инверсии, затем один знак раскрыть по закону де Моргана:

= . (1.13)

Таким образом, при соглашениях отрицательной логики аналог УГО элемента ЗАПРЕТ будет представлять собой УГО элемента 2ИЛИ-НЕ, только по одному из входов следует поставить указатель инверсии.

1   ...   5   6   7   8   9   10   11   12   13


написать администратору сайта