Главная страница
Навигация по странице:

  • Методы улучшения качества воды.

  • Специальные способы улучшения качества воды.

  • Особенности водоснабжения в экстремальных условиях.

  • Количественные нормы водопотребления.

  • Требования к качеству питьевой воды в полевых условиях.

  • Гигиеническая экспертиза воды в полевых условиях.

  • Табельные средства очистки и обеззараживания воды в полевых условиях

  • Обеззараживание индивидуальных запасов воды.

  • Подручные средства обеззараживания воды.

  • гигиена. конспект лекции гигиена. Введение в гигиену. Гигиеническая оценка воздушной среды


    Скачать 372.5 Kb.
    НазваниеВведение в гигиену. Гигиеническая оценка воздушной среды
    Анкоргигиена
    Дата08.02.2021
    Размер372.5 Kb.
    Формат файлаdoc
    Имя файлаконспект лекции гигиена.doc
    ТипДокументы
    #174922
    страница3 из 4
    1   2   3   4

    ВЫБОР ИСТОЧНИКОВ ВОДОСНАБЖЕНИЯ. МЕТОДЫ УЛУЧШЕНИЯ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ. ГИГИЕНА ВОДОСНАБЖЕНИЯ ОРГАНИЗОВАННЫХ КОЛЛЕКТИВОВ В ЭКСТРЕМАЛЬНЫХ УСЛОВИЯХ.
    Выбор источника водоснабжения является основополагающим моментом в обеспечении надлежащего качества питьевой воды при организации систем питьевого водоснабжения населенных мест. Выбор источников централизованного водоснабжения должен осуществляться в соответствии с ГОСТом 2761-84 «Источники централизованного хозяйственно-питьевого водоснабжения. Гигиенические и технические требования и правила выбора».

    В качестве основного критерия при выборе источников водоснабжения указывается их санитарная надежность, под которой понимается защищенность от загрязнений. В соответствии с этим критерием в первую очередь должны использоваться: а) межпластовые напорные (артезианские) воды, как наиболее надежно защищенные с поверхности, только в случае их отсутствия или недостаточности запасов рекомендуется переходить к другим источникам в порядке снижения их санитарной надежности; б) межпластовым безнапорным водам; в) грунтовым водам, в том числе, искусственно наполняемым и подрусловым; г)поверхностным водоемам (реки, водохранилища, озера, каналы).

    Грунтовыми водами называются подземные воды, скапливающиеся на первом от поверхности водоупорном слое. Они не защищены с поверхности, вследствие чего легко могут подвергаться разного рода загрязнениям, и отличаются разнообразием и непостоянством состава. В зависимости от наличия или отсутствия источников загрязнения санитарное состояние грунтовых вод может быть различным. Если грунтовые воды не загрязнены и степень их минерализации не превышает допустимых уровней, то они вполне пригодны для питьевого водоснабжения. При наличии же массивного загрязнения почвы населенного места и близком залегании грунтовых вод к поверхности велика опасность их массивного загрязнения и заражения.

    Межпластовые воды залегают между двумя водоупорными пластами, изолированы от атмосферных осадков и поверхностных грунтовых вод водонепроницаемой кровлей, в силу чего обладают наибольшей санитарной надежностью. Они, как правило, имеют низкое бактериальное загрязнение и относительно постоянный химический состав. Недостатком их часто является высокое солесодержание и, в ряде случаев, повышенное содержание аммиака, сероводорода и ряда минеральных веществ - фтора, бора, брома, стронция и др. В зависимости от условий залегания межпластовые воды могут быть напорными и безнапорными.

    Напорные межпластовые воды называются артезианскими. Они отличаются наибольшей глубиной залегания и наивысшей санитарной надежностью. Вследствие защищенности от загрязнения и постоянства состава при выборе водоисточника межпластовые подземные воды должны выбираться в первую очередь. В большом числе случаев межпластовые воды соответствуют нормативам на качество питьевой воды и могут использоваться для питьевых целей без предварительной обработки. Добыча межпластовых вод осуществляется через буровые скважины.

    Из-за недостаточности запасов подземных вод в практике водоснабжения весьма часто используют поверхностные водоисточники (реки, водохранилища, озера, каналы), которые подвергаются загрязнению за счет спуска хозяйственных, фекальных и промышленных сточных вод, судоходства, лесосплава, массового купания и т.д. Отличиями качества поверхностных водоисточников является более низкий, по сравнению с подземными, уровень минерализации, большее количество взвешенных веществ, высокая цветность и высокий уровень микробного загрязнения.

    При выборе источника водоснабжения важное значение имеет выяснение степени его загрязнения. Так, содержание органических веществ определяется по показателям окисляемости, биологической потребности воды в кислороде (БПК), показателям нитрификации, качества источников централизованного водоснабжения.

    В источнике водоснабжения нормируется также предельное бактериологическое загрязнение, поскольку хорошие бактериологические показатели в обработанной воде при обычных способах водоподготовки могут быть получены, только когда бактериальное загрязнение воды до очистки и обеззараживания не превышает определенных пределов.

    Концентрация химических веществ, которые могут попадать в воду в результате промышленного, сельскохозяйственного, бытового или иного загрязнения, не должны превышать установленных на них ПДК (СанПиН 2.1.4.1074 - 01 «Питьевая вода»).

    При обнаружении в воде источников водоснабжения химически веществ, относящихся к 1 и 2 классам опасности с одинаковым лимитирующим показателем вредности сумма отношений концентраций каждого из веществ в воде к ПДК не должна быть более 1.

    Расчет ведется по формуле:

    С1 + С2 + С3 _ + С4 ≤ 1 ПДК1 ПДК2 ПДК3 ПДК4 где С1 , С2 ,С3 ,С4 - обнаруженные концентрации, мг/л.

    Помимо этого, вода водоисточников должна также соответствовать нормам радиационной безопасности.

    По результатам всех выполненных анализов определяется пригодность выбранного водного объекта для использования в качестве источника питьевого водоснабжения и определяется его класс.

    В зависимости от качества воды водные объекты, пригодные в качестве источников питьевого водоснабжения (поверхностные и подземные) делятся на 3 класса (табл.23). Для каждого класса источников определены методы обработки, которые необходимо применять для доведения их воды до питьевого качества (соответствии требованиям СанПиН 21.4.1074 - 01 («Питьевая вода»).

    Помимо оценки качества воды источников водоснабжения учитываются следующие данные:

    • характеристика санитарного состояния места размещения водозаборных сооружений и прилегающей территории (для подземных источников водоснабжения);

    • характеристика санитарного состояния места водозабора и самого источника выше и ниже водозабора (для поверхностных источников водоснабжения;

    • определение степени природной и санитарной надежности и прогноза санитарного состояния.

    Пригодность источника для хозяйственно-питьевого водоснабжения и места водозабора устанавливают органы государственной санитарно-эпидемиологической службы министерства здравоохранения.

    Методы улучшения качества воды. Использование природных вод открытых водоемов, а иногда и подземных вод в целях хозяйственно-питьевого водоснабжения практически невозможно без предварительного улучшения свойств воды и ее обеззараживания. Чтобы качество воды соответствовало гигиеническим требованиям, применяют предварительную обработку, в результате которой вода освобождается от взвешенных частиц, запаха, привкуса, микроорганизмов и различных примесей. Такое улучшение свойств воды достигается на водопроводных станциях.

    Для улучшения качества воды применяются следующие методы:1) очистка - удаление взвешенных частиц; 2) обеззараживание - уничтожение микроорганизмов; 3) специальные методы улучшения воды: умягчение, удаление некоторых химических веществ, и др.

    Очистка воды. Очистка является важным этапом в общем комплексе методов улучшения качества воды, так как улучшает ее физические и органолептические свойства. При этом в процессе удаления из воды взвешенных частиц удаляется и значительная часть микроорганизмов, в результате чего полная очистка воды позволяет легче и экономичнее осуществлять обеззараживание. Очистка осуществляется механическим (отстаивание), физическим (фильтрование) и химическим (коагуляция) методами.

    Остаивание при котором происходит осветление и частичное обесцвечивание воды, осуществляется в специальных сооружениях - отстойниках. Используются две конструкции отстойников: горизонтальные и вертикальные. Принцип их действия состоит в том, что благодаря поступлению через узкое отверстие и замедленному протеканию воды в отстойнике основная масса взвешенных частиц оседает на дно. Процесс отстаивания в отстойниках различной конструкции продолжается в течение 2 - 8 ч. Однако мельчайшие частицы, в том числе значительная часть микроорганизмов, не успевают осесть. Поэтому отстаивание нельзя рассматривать как основной метод очистки воды.

    Фильтрация - процесс более полного освобождения воды от взвешенных частиц, заключающийся в том, что воду пропускают через фильтрующий мелкопористый материал, чаще всего через песок с определенным размером частиц. Фильтруясь, вода оставляет на поверхности и в глубине фильтрующего материала взвешенные частицы. На водопроводных станциях фильтрация применяется после коагуляции. В санитарной практике используются медленные и быстрые фильтры. В настоящее время начали применяться кварцевоантрацитовьие фильтры, значительно увеличивающие скорость фильтрации.Для предварительной фильтрации воды используются микрофильтры для улавливания зоопланктона - мельчайших водных животных, и фитопланктона - мельчайших водных растений. Эти фильтры устанавливают перед местом водозабора или перед очистными сооружениями.

    Коагуляция представляет собой химический метод очистки воды. Преимущество этого метода заключается в том, что он позволяет освободить воду от загрязнений, находящихся в виде взвешенных частиц, не поддающихся удалению с помощью отстаивания и фильтрации. Сущность коагуляции заключается в добавлении к воде химического вещества - коагулянта, способного реагировать с находящимися в ней бикарбонатами. В результате этой реакции образуются крупные, довольно тяжелые хлопья, несущие положительный заряд. Оседая вследствие собственной тяжести, они увлекают за собой находящиеся в воде во взвешенном состоянии частицы загрязнений, заряженные отрицательно, и тем самым способствуют довольно быстрой очистке воды. За счет этого процесса вода становится прозрачной, улучшается показатель цветности.

    В качестве коагулянта в настоящее время наиболее широко применяется сульфат алюминия, образующий с бикарбонатами воды крупные хлопья гидроксида алюминия. Для улучшения процесса коагуляции используются высокомолекулярные флоккулянты: щелочной крахмал, флоккулянты ионного типа, активизированная кремниевая кислота и другие синтетические препараты, производные акриловой кислоты, в частности полиакриламид.

    В настоящее время в водопроводной системе применяется установка, заменяющая весь комплекс очистных сооружений обычного типа и работающая по схеме: коагуляция - отстаивание - фильтрация. Она называется контактным осветлителем и представляет собой бетонный резервуар, заполненный гравием и песком на высоту 2,3 - 2,6 м. Вода подается через систему труб в нижнюю часть осветлителя, а коагулянт вводится непосредственно в трубопровод перед поступлением воды в осветлитель. Коагуляция происходит в нижних крупнозернистых частях осветлителя, а в верхних задерживаются хлопья коагулянта и другие взвешенные вещества.

    Обеззараживание. Уничтожение микроорганизмов является последним завершающим этапом обработки воды, обеспечивающим ее эпидемиологическую безопасность. Для обеззараживания воды применяются химические (реагентные) и физические (безреагентные) методы. В лабораторных условиях для небольших объемов воды может быть использован механический метод.

    Химические (реагентные) методы обеззараживания основаны на добавлении к воде различных химических веществ, вызывающих гибель находящихся в воде микроорганизмов. Эти методы достаточно эффективны. В качестве реагентов могут быть использованы различные сильные окислители: хлор и его соединения, озон, йод, перманганат калия, некоторые соли тяжелых металлов, серебро.

    В санитарной практике наиболее надежным и испытанным способом обеззараживания воды является хлорирование. На водопроводных станциях оно производится при помощи газообразного хлора и растворов хлорной извести. Кроме этого, могут использоваться такие соединения хлора, как гипохлорат натрия, гипохлорит кальция, двуокись хлора.

    Механизм действия хлора заключается в том, что при добавлении его к воде он гидролизуется, в результате чего происходит образование хлористоводородной и хлорноватистой кислот:

    Сl2 + Н2О = НСl + НОСl

    Хлорноватистая кислота в воде диссоциирует на ионы водорода (Н) и гипохлоритные ионы (ОСl), которые наряду с диссоциированными молекулами хлорноватистой кислоты обладают бактерицидным свойством. Комплекс (НОСl + ОСl) называется свободным активным хлором.

    Бактерицидное действие хлора осуществляется главным образом за счет хлорноватистой кислоты, молекулы которой малы, имеют нейтральный заряд и поэтому легко проходят через оболочку бактериальной клетки. Хлорноватистая кислота воздействует на клеточные ферменты, в частности на SН-группы, нарушает обмен веществ микробных клеток и способность микроорганизмов к размножению. В последние годы установлено, что бактерицидный эффект хлора основан на угнетении ферментов - катализаторов окислительно-восстановительных процессов, обеспечивающих энергетический обмен бактериальной клетки.

    Обеззараживающее действие хлора зависит от многих факторов, среди которых доминирующими являются биологические особенности микроорганизмов, активность действующих препаратов хлора, состояние водной среды и условия, в которых производится хлорирование.

    Процесс хлорирования зависит от стойкости микроорганизмов. Наиболее устойчивыми являются спорообразующие. Среди неспоровых отношение к хлору различное, например брюшнотифозная палочка менее устойчива, чем палочка паратифа, и т. д. Важным является массивность микробного обсеменения: чем она выше, тем больше хлора нужно для обеззараживания воды. Эффективность обеззараживания зависит от активности используемых хлорсодержащих препаратов. Так, газообразный хлор более эффективен, чем хлорная известь.

    Большое влияние на процесс хлорирования оказывает состав воды; процесс замедляется при наличии большого количества органических веществ, так как большее количество хлора уходит на их окисление, и при низкой температуре воды. Существенным условием хлорирования является правильный выбор дозы. Чем выше доза хлора и чем продолжительнее его контакт с водой, тем более высоким будет обеззараживающий эффект.

    Хлорирование производится после очистки воды и является заключительным этапом ее обработки на водопроводной станции. Иногда для усиления обеззараживающего эффекта и для улучшения коагуляции часть хлора вводят вместе с коагулянтом, а другую часть, как обычно, после фильтрации. Такой метод называется двойным хлорированием.

    Различают обычное хлорирование, т.е. хлорирование нормальными дозами хлора, которые устанавливаются каждый раз опытным путем, суперхлорирование, т. е. хлорирование повышенными дозами.

    Хлорирование нормальными дозами применяется в обычных условиях на всех водопроводных станциях. При этом большое значение имеет правильный выбор дозы хлора, что обусловливается степенью хлорпоглощаемости воды в каждом конкретном случае.

    Главными условиями эффективного хлорирования воды являются перемешивание ее с хлором, контакт между обеззараживаемой водой и хлором в течение 30 мин в теплое время года и 60 мин в холодное время

    На крупных водопроводных станциях для обеззараживания воды применяется газообразный хлор. Для этого жидкий хлор, доставляемый на водопроводную станцию в цистернах или баллонах, перед применением переводится в газообразное состояние в специальных установках - хлораторах, с помощью которых обеспечиваются автоматическая подача и дозирование хлора.

    Техническая хлорная известь содержит обычно около 35 % активного хлора. При хранении ее в сыром помещении, на свету и при высокой температуре она разлагается и значительно снижает свою активность. Для обеззараживания воды допускается использование хлорной извести, содержащей не менее 25 % активного хлора. Поэтому, прежде чем использовать хлорную известь для хлорирования воды, необходимо определить в ней процентное содержание активного хлора.

    Суперхлорирование (гиперхлорирование) воды проводится по эпидемиологическим показаниям или в условиях, когда невозможно обеспечить необходимый контакт воды с хлором (в течение 30 мин). Обычно оно применяется в военно-полевых условиях, экспедициях и других случаях и производится дозами, в 5-10 раз превышающими хлорпоглощаемость воды, т. е. 10-20 мг/л свободного хлора. Время контакта между водой и хлором при этом сокращается до 15-10 мин. Суперхлорирование имеет ряд преимуществ. Основными из них являются значительное сокращение времени хлорирования, упрощение его техники, так как нет необходимости определять остаточный хлор и дозу, и возможность обеззараживания воды без предварительного освобождения ее от мути и осветления. Недостатком гиперхлорирования является сильный запах хлора, но его можно устранить добавлением к воде тиосульфата натрия, активированного угля, сернистого ангидрида и других веществ (дехлорирование).

    На водопроводных станциях иногда проводят хлорирование с преаммонизацией. Этот метод применяется в тех случаях, когда обеззараживаемая вода содержит фенол иди другие вещества, которые придают ей неприятный запах. Для этого в обеззараживаемую воду вначале вводят аммиак или его соли, а затем, через 1-2 мин, - хлор. При этом образуются хлорамины, обладающие сильным бактерицидным свойством.

    К химическим методам обеззараживания воды относится озонирование. Озон является нестойким соединением. В воде он разлагается с образованием молекулярного и атомарного кислорода, с чем связана сильная окислительная способность озона. В процессе его разложения образуются свободные радикалы ОН и НО2, обладающие выраженными окислительными свойствами. Озон имеет высокий окислительно-восстановительньй потенциал, поэтому его реакция с органическими веществами, находящимися в воде, происходит более полно, чем у хлора. Механизм обеззараживающего действия озона аналогичен действию хлора: являясь сильным окислителем, озон повреждает жизненно важные ферменты микроорганизмов и вызывает их гибель. Имеются предположения, что он действует как протоплазматический яд.

    Преимущество озонирования перед хлорированием заключается в том, что при этом способе обеззараживания улучшаются вкус и цвет воды, поэтому озон может быть использован одновременно для улучшения ее органолептических свойств. Озонирование не оказывает отрицательного влияния на минеральный состав и рН воды. Избыток озона превращается в кислород, поэтому остаточный озон не опасен для организма и не влияет на органолептические свойства воды. Контроль за озонированием менее сложен, чем за хлорированием, так как озонирование не зависит от таких факторов, как температура, рН воды и т.д. Для обеззараживания воды необходимая доза озона в среднем равна 0,5 – 6 мг/л при экспозиции 3-5 мин. Озонирование производится при помощи аппаратов - озонаторов.

    При химических способах обеззараживания воды используют также олигодинамические действия солей тяжелых металлов (серебра, меди, золота). Олигодинамическим действием тяжелых металлов называется их способность оказывать бактерицидный эффект в течение длительного срока при крайне малых концентрациях. Механизм действия заключается в том, что положительно заряженные ионы тяжелых металлов вступают в воде во взаимодействие с микроорганизмами, имеющими отрицательный заряд. Происходит электроадсорбция, в результате которой они проникают в глубь микробной клетки, образуя в ней альбуминаты тяжелых металлов (соединения с нуклеиновыми кислотами), в результате чего микробная клетка погибает. Данный метод обычно применяется для обеззараживания небольших количеств воды.

    Перекись водорода давно известна как окислитель. Ее бактерицидное действие связано с выделением кислорода при разложении. Метод применения перекиси водорода для обеззараживания воды в настоящее время еще полностью не разработан.

    Безреагентные методы не оказывают влияния на состав и свойства обеззараживаемой воды, не ухудшают ее органолептических свойств. Они действуют непосредственно на структуру микроорганизмов, вследствие чего обладают более широким диапазоном бактерицидного действия. Для обеззараживания необходим небольшой период времени.

    Наиболее разработанным и изученным в техническом отношении методом является облучение воды бактерицидными (ультрафиолетовыми) лампами. Наибольшим бактерицидным свойством обладают УФ-лучи с длиной волны 200-280 нм; максимум бактерицидного действия приходится на длину волны 254-260 нм. При обеззараживании воды УФ-лучами погибают не только вегетативные формы микробов, но и споровые, а также вирусы, яйца гельминтов, устойчивые к воздействию хлора. Применение бактерицидных ламп не всегда возможно, так как на эффект обеззараживания воды УФ-лучами влияют мутность, цветность воды, содержание в ней солей железа. Поэтому, прежде чем обеззараживать воду таким способом, ее необходимо тщательно очистить.

    Из всех имеющихся физических методов обеззараживания воды наиболее надежным является кипячение. В результате кипячения в течение 3-5 мин погибают все имеющиеся в ней микроорганизмы, а после 30 мин вода становится полностью стерильной. Несмотря на высокий бактерицидный эффект, этот метод не находит широкого применения для обеззараживания больших объемов воды. Его можно использовать в быту, детских учреждениях. Недостатком кипячения является ухудшение вкуса воды, наступающего в результате улетучивания газов, и возможность более быстрого развития микроорганизмов в кипяченой воде.

    К физическим методам обеззараживания воды относится использование импульсного электрического разряда, ультразвука и ионизирующего излучения. В настоящее время эти методы широкого практического применения не находят.

    Специальные способы улучшения качества воды. Помимо основных методов очистки и обеззараживания воды, в некоторых случаях возникает необходимость производить специальную ее обработку. В основном эта обработка направлена на улучшение минерального состава воды и ее органолептических свойств.

    Дезодорация - удаление посторонних запахов и привкусов. Необходимость проведения такой обработки обусловливается наличием в воде запахов, связанных с жизнедеятельностью микроорганизмов, грибов, водорослей, продуктов распада и разложения органических веществ. С этой целью применяются такие методы, как озонирование, углевание, хлорирование, обработка воды перманганатом калия, перекисью водорода, фторирование через сорбционные фильтры, аэрация.

    Дегазация воды - удаление из нее растворенных дурнопахнущих газов. Для этого применяется аэрация, т. е. разбрызгивание воды на мелкие капли в хорошо проветриваемом помещении или на открытом воздухе, в результате чего происходит выделение газов.

    Умягчение воды - полное или частичное удаление из нее катионов кальция и магния. Умягчение проводится специальными реагентами или при помощи ионообменного и термического методов.

    Опреснение (обессоливание) воды чаще производится при подготовке ее к промышленному использованию. Частичное опреснение воды осуществляется для снижения содержания в ней солей до тех величин, при которых воду можно использовать для питья (ниже 1000 мг/л). Опреснение достигается дистилляцией воды, которая производится в различных опреснителях (вакуумные, многоступенчатые, гелиотермические), ионитовых установках, а также электрохимическим способом и методом вымораживания.

    Обезжелезивание - удаление из воды железа производится аэрацией с последующим отстаиванием, коагулированием, известкованием, катионированием. В настоящее время разработан метод фильтрования воды через песчаные фильтры.

    Обесфторивание - освобождение природных вод от избыточного количества фтора. С этой целью применяют метод осаждения, основанный на сорбции фтора осадком гидроокиси алюминия и других адсорбентов. При недостатке в воде фтора проводят фторирование.

    В случае загрязнения воды радиоактивными веществами ее подвергают дезактивации, т.е. удалению радиоактивных веществ.

    Особенности водоснабжения в экстремальных условиях. Обеспечение больших групп людей доброкачественной водой и в достаточном количестве является важным условием их жизнеобеспечения, особенно в полосе жаркого климата. Разрушение водоисточников при землетрясении, взрывах, авариях на станциях водоснабжения и употребление недоброкачественной воды приводит к эпидемиям. Концентрация большого количества людей на небольшой территории вызывает сильное загрязнение почвы и воды нечистотами, микроорганизмами, в том числе и патогенными, а также химическими веществами.

    Кроме естественного загрязнения воды, особенно при ведении военных действий, можно ожидать намеренного заражения воды бактериальными средствами (БС), отравляющими веществами (ОВ) и радиоактивными веществами (РВ), что ещё больше усложнит водоснабжение.

    Наиболее вероятно применение бактериологического оружия именно для заражения воды, при этом возможно заражение её такими микроорганизмами, которые не характерны для водных инфекций - возбудителями чумы, натуральной оспы, сибирской язвы, туляремии, Ку-лихорадки, токсина ботулизма, возбудителей глубоких микозов - кокцидоза и милиоидоза.

    Бактериальные средства могут быть применены самостоятельно или в сочетании с отравляющими веществами (V-газы, иприт, зарин, зоман и др.), или с радиоактивными веществами, попадающими в водоисточники во время аварии, или при ядерном взрыве, или при вымывании радиоактивных веществ с зараженных территорий.

    Степень заражения воды бактериологическими средствами может достигать более чем 100000 - 1000000 в 1 л, (105-106 микробных клеток в 1 л воды). Проведение бактериологического контроля за обеззараживанием воды в полевых условиях затрудне но и требует длительного исследования - 1-3 суток.

    Распространенный метод определения колиформных бактерий в условиях намеренного заражения воды бактериальными средствами теряет свое значение. Обеззараживание воды нормальными дозами в этих условиях неэффективно. Средства и методы обеззараживания воды от бактериальных средств должны гарантировать безопасность воды в наиболее жестких условиях, т.е. при заражении её самыми стойкими агентами - бактериальными спорами.

    Пункты водоснабжения. Снабжение питьевой водой осуществляется только через пункт водоснабжения. Пунктом водоснабжения называется место, где производят добычу, очистку, хранение и выдачу воды. При выборе места для развертывания пункта водоснабжения учитывают санитарно-эпидемиологическое состояние территории, возможность заражения воды бактериальными средствами и степень загрязнения её отравляющими веществами и радиоактивными веществами.

    Для защиты источника водоснабжения от возможного загрязнения и заражения в радиусе 50-100 м от пункта создается зона санитарной охраны, где запрещается свалка мусора, устройство отхожих мест и выгребных ям, место для рабочей площадки выбирают в 25-30 м от места забора воды. Загрязненная вода отводится в водосборные колодцы. В состав пункта водоснабжения входит рабочая площадка, разделенная на «чистую» и «грязную» половины. На «грязной» половине размещают водоочистные установки, запас химических реагентов и резервуары для обработки воды. На «чистой» половине устанавливают емкости для хранения чистой воды и организуют место выдачи чистой воды в вымытые и обеззараженные емкости (цистерны), в которых воду доставляют в подразделения.

    В состав пункта водоснабжения входят таромоечная площадка для мытья цистерн, резервуаров и фляжек, а также полевая лаборатория для проведения контроля за качеством воды. Определение ОВ и РВ осуществляется на месте, а для бактериологического контроля отбирают 2 пробы по 1л и направляют на исследование в микробиологич. лабораторию.

    Количественные нормы водопотребления. Потребность в воде зависит от характера работы или военных и климатических условий. Отсутствие воды человеком переносится более тяжело, чем отсутствие пищи. Если голод человек может переносить в течение от 40 до 60 дней, то лишение воды - не более 10-12 дней. Физиологические потребности человека в воде составляют примерно 3 л в сутки, при тяжелой работе - 5-6 л, а в особо трудных условиях - до 10-12 л. Минимальная норма для питья (2,5 л в средней полосе, 4 л в условиях жаркого климата) вводится только в исключительных случаях в пустынях, маловодных местностях и при массовом заражении источников водоснабжения. При усиленной работе обеспечение водой по минимальной норме допускается в умеренном поясе не более 5 суток, а в жарком - не более 3 суток. На медицинскую службу возложена ответственность за водопотреблением. Минимальные нормы потребления воды при первой же возможности должны быть увеличены.

    Требования к качеству питьевой воды в полевых условиях. В полевых условиях вода должна быть такого качества, чтобы употребление её в течение времени, определяемого реальной боевой обстановкой, не вызывало снижения боеспособности военнослужащих.

    Способы обеззараживания воды в полевых условиях должны обеспечивать безопасность воды по основным критериям:

    1. Безопасность воды в эпидемиологическом отношении - полное уничтожение патогенных микроорганизмов и их токсинов.

    2. Безвредность воды по химическому составу. Предельно допустимые концентрации химических веществ, нормируемых по токсикологическому признаку, должны соответствовать СанПиН 2.1.4.1074-01 «Питьевая вода. Остаточное содержание ОВ не должно превышать: V-газы - 0,005 мг/л; зоман - 0,05 мг/л; зарин - 0,1 мг/л; иприт - 2,0 мг/л.

    Остаточное содержание РВ: минимальная предельно допустимая концентрация, равная 3 х 10-11 Кu/л, определена для тория-232, а максимальная - для технеция-96, равная 10-5 Кu/л. ПДК остальных 241 изотопов располагаются между этими величинами.

    1. Вода должна иметь благоприятные органолептические свойства, однако для полевых условий военного времени допускается употребление воды, имеющей общее содержание солей до 1500 мг/л, с содержанием сульфатов - до 1000 мг/л, имеющей цветность до 400, прозрачность - до 30 см, запах и привкус - до 3 баллов.

    Допускается использование воды с остаточным хлором до 2 мг/л и для разового употребления - до 10 мг/л.

    Гигиеническая экспертиза воды в полевых условиях. Цель экспертизы - выдача разрешения на употребление воды. Особо важное значение приобретает экспертиза при подозрении на преднамеренное заражение воды БС (бактериальными средствами), ОВ (отравляющими веществами) и РВ (радиоактивными веществами).

    В экспертизе принимают участие бактериолог, вирусолог, эпидемиолог, токсиколог, химик, инженер-радиометрист, радиолог, гигиенист и др. При проведении гигиенической экспертизы специалист медицинской службы руководствуется допустимыми концентрациями токсических и радиоактивных веществ в воде, используемой личным составом. Гигиеническая экспертиза проводится в 4 этапа: 1) исследование на месте; 2) отбор проб; 3) лабораторное исследование; 4) составление экспертного заключения.

    При обнаружении патогенных микроорганизмов или вирусов пробы воды направляют в вирусологическую или бактериологическую лабораторию для проведения анализов по полной схеме.

    Санитарные исследования химического состава и физических свойств могут проводиться с использованием гигиенической лаборатории (ЛГ), имеющейся в СПЭВ. Для санитарно-токсикологической экспертизы применяют прибор химической разведки ПХРМВ, представляющий собой металлический ящик с откидывающейся крышкой. В комплекте прибора имеются индикаторные трубки и ампульный набор реагентов для определения ОВ. Для измерения радиоактивного заражения воды применяют полевой дозиметрический прибор рентгенметр-радиометр.

    Табельные средства очистки и обеззараживания воды в полевых условиях. В экстремальных условиях для очистки и обеззараживания воды, как правило, используют табельные (штатные) средства армии.

    При выборе водоисточников предпочтение отдается подземным водам, для чего в распоряжении начальника инженерной службы имеются табельные технические средства подъема воды путем устройства скважин глубиной 7-15 м (мелкий трубчатый колодец МТК2м - скважина вручную 7 м и механизированный шнековый колодец МШК-15 - скважина вручную 15 м). Погружной насос КПП-5 позволяет пробурить скважину до 45 м и проводить подъем воды с указанной глубины.

    В случае отсутствия пресной воды в арсенал табельных средств входят опреснительные установки - ПОУ-4 (передвижная опреснительная установка) и передвижная опреснительная станция ОПС. Установка ПОУ смонтирована на шасси автомобиля ЗИЛ и состоит из теплообменных испарителей и насосно-компенсаторной группы, коммуникаций и аппаратуры.

    Станция ОПС смонтирована на шасси КРАЗ и имеет передвижную электростанцию. Следует отметить, что при опреснении воды происходит удаление из воды большинства радиоактивных веществ.

    При использовании воды поверхностных водоисточников предусмотрены следующие табельные средства очистки и обеззараживания воды: МАФС-З (модернизированная автомобильная фильтровальная станция, производительность станции 7-8 м3/час; ВФС-2,5 (войсковая фильтровальная станция, производительность - 2,5 м3/час); ТУФ-200 (тканевоугольный фильтр, производительность 200 л/час) и другие.

    Все табельные средства предназначены для очистки и обеззараживания воды как от естественных загрязнений, так и от преднамеренно внесенных в воду бактериологических средств (БС), отравляющих (ОВ) и радиоактивных веществ (РВ).

    МАФС-3 смонтирована на шасси автомобиля ЗИЛ и двухосном прицепе. Станцию развертывают на рабочей площадке пункта водоснабжения при удалении от источника не более 50 м. Работает станция МАФС-3 в периодическом режиме, т.е. химические реагентыкоагулянты и хлорсодержащие препараты периодически вносят в открытые резервуары одновременно с заполнением их исходной водой из открытого водоисточника.

    ВФС-2,5 смонтирована на шасси автомобиля ЗИЛ и работает в непрерывном режиме обработки воды. С этой целью на шасси автомобиля установлен резервуар (осветлитель) - емкость на 1 м3 воды. Вода из поверхностного водоема поступает в указанный осветлитель вместе с непрерывно дозируемыми реагентами. В осветлителе происходит предварительное осветление и обеззараживание воды с последующей доочисткой путем фильтрации через фильтр с антрацитовой крошкой и обеззараживание её ультрафиолетовыми лучами. Дехлорирование проводят фильтрованием через активированный уголь или карбоферрогель.

    Обеззараживание индивидуальных запасов воды. В мелких подразделениях и группах, выполняющих индивидуальные задачи, обезвреживание воды обеспечивается силами личного состава или каждым военнослужащим в отдельности. Для обеззараживания и улучшения качества индивидуальных и групповых запасов воды применяются табельные и, в зависимости от обстановки, те или иные подручные средства.

    Подручные средства обеззараживания воды. Для обеззараживания индивидуальных запасов воды при отсутствии таблеток могут применяться подручные средства из аптечки или индивидуального химического пакета: 5% настойка йода, 3% раствор перекиси водорода, перманганат калия и др.
    1   2   3   4


    написать администратору сайта