Главная страница
Навигация по странице:

  • Содержимое Вселенной

  • Составная часть Вселенной % от массы/энергии Вселенной Примечания

  • Измерение межзвездных расстояний

  • Галактики: первые теории и наблюдения

  • Космологический вклад Эйнштейна

  • Рис. 6.3. Марсель Гроссман, Альберт Эйнштейн, Густав Гисслер и Геральд Гроссман

  • Уиггинс. 5 нерешенных проблем науки. Янко Слава (Библиотека FortDa )


    Скачать 5.17 Mb.
    НазваниеЯнко Слава (Библиотека FortDa )
    АнкорУиггинс. 5 нерешенных проблем науки.pdf
    Дата03.08.2018
    Размер5.17 Mb.
    Формат файлаpdf
    Имя файлаУиггинс. 5 нерешенных проблем науки.pdf
    ТипКнига
    #22443
    КатегорияФизика
    страница11 из 22
    1   ...   7   8   9   10   11   12   13   14   ...   22
    Глава 6. Астрономия. Почему Вселенная расширяется со все большей
    скоростью?
    Разведка — вот что вам предстоит! Не нанесение на карту звезд и изучение туманностей, а вычерчивание неведомых возможностей бытия.
    Слова Кью, обращенные к капитану Пикару
    («Звездный путь: Следующее поколение»
    *
    )
    Астрономия или, точнее, космология изучает возникновение, развитие и макроскопическое строение и поведение Вселенной. До недавнего времени крупнейшей нерешенной задачей астрономии (космологии) было выяснение вопроса, будет ли Вселенная расширяться всегда или же в конце
    *
    Star Trek
    (
    «Звездный путь»
    )
    — научно-фантастический телесериал 1965—1969 годов, ставший особенно популярным во время повторного показа в 1970-е годы. В 1979 году вышел фильм «Звездный путь» («Star Trek: The Movie»), а затем и второй телесериал («Звездный путь: Следующее поколение (Next Generation)», 1987—1994). Автором и создателем мира
    «Звездного пути» является писатель, сценарист, продюсер, режиссер Джин (полное имя Юджин Уэсли) Родденберри (1921—
    1991). Этот сериал положил начало суперпопулярной фантастической эпопее. Уже снято четыре телевизионных сериала, всего более 500 серий (скоро начнутся съемки пятого сериала), девять художественных фильмов (десятый появился на экранах в 2001 году), написано более 300 крупных повестей и романов и бесчисленное количество рассказов.
    175
    концов она сожмется. Обнаружение ускоряющегося расширения Вселенной, что указывает на его необратимость, возможно, закрыло данный вопрос, но породило следующий. Причина такого все ускоряющегося расширения, порой именуемая темной энергией, похоже, противоречит современным представлениям о силах, определяющих поведение Вселенной. Объяснение феномена темной энергии и ныне остается крупнейшей нерешенной проблемой астрономии.
    Содержимое Вселенной
    «Что там?» — привычный вопрос людей, вглядывающихся в небо.
    Попытки астрономии ответить на него в отношении всей Вселенной то дразнят нас своими поразительными ответами, то обескураживают столь же поразительными вопросами.
    176

    Янко Слава
    (Библиотека
    Fort/Da
    ) || http://yanko.lib.ru
    Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР-
    ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
    90
    Содержимое всей Вселенной можно выразить в понятиях ее массы/энергии (масса и энергия оказываются взаимозаменяемыми величинами согласно знаменитому уравнению Эйнштейна: энергия = масса х квадрат скорости света, или
    Е
    =
    тс
    2
    ).
    В нижеследующей таблице представлены самые последние оценки содержимого
    Вселенной в величинах массы и энергии, сопровождаемые краткими пояснениями.

    Янко Слава
    (Библиотека
    Fort/Da
    ) || http://yanko.lib.ru
    Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР-
    ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
    91
    Составная часть
    Вселенной
    % от массы/энергии
    Вселенной
    Примечания
    Темная энергия
    73
    Вызывает ускоряющееся расширение Вселенной. При всей ее скрытности и при всем неведении о ее природе наблюдается огромное воздействие со стороны темной энергии
    Темная материя
    23
    Хотя ее саму не удалось еще наблюдать, она ответственна за быстрое вращение галактик и галактических скоплений
    Обыкновенная материя
    4
    Наблюдаемые яркие звезды, галактики и галактические скопления
    Нейтрино менее 1
    Установлена верхняя граница их совокупной массы, а действительное значение пока не определено
    Напрашивается поразительный вывод:
    при всей неуловимости темная энергия и темная материя составляют
    96% Вселенной и определяют ее поведение.
    Поэтому вполне справедливо задаться вопросом: как астрономия пришла к такому пониманию Вселенной?
    Подобно хорошему детективному сюжету наше понимание приходило мучительно, шаг за шагом. Ныне это обычно происходит так: усовершенствованная или новая часть экспериментальной оснастки позволяет увидеть нечто новое. Затем теоретики стараются объяснить новые данные посредством существу-
    177
    ющих теорий или же выдвигают иные гипотезы. Потом делаются предсказания и проводятся новые опыты для уяснения того, как действительность согласуется с предсказанием (можно вообразить, с каким ликованием экспериментаторы доставляют теоретикам щекотливые факты).
    В данной главе мы покажем, как приходило к астрономии ее нынешнее понимание Вселенной. Особое внимание будет обращено на скопления звезд, именуемые галактиками, и способы измерения расстояний до звезд и галактик и их скоростей. В заключение мы исследуем путь к возможному решению задач, связанных с преобладающими во Вселенной темной энергией и темной материей.
    Измерение межзвездных расстояний
    Вселенная полна невообразимого числа объектов (которых, выражаясь памятными многим словами астронома
    Карла Сагана, миллиарды и миллиарды). Начнем же, казалось бы, с простого вопроса об одном из этих объектов, звезде. Насколько отстоит от нас та или иная звезда? При взгляде на звезды у себя над головой привычное чувство расстояния нас подводит. Все звезды кажутся одинаково удаленными. Планеты и звезды столь далеки, что представляются расположенными на одном расстоянии. Вот почему небо выглядит как купол.
    Поскольку оба наших глаза смотрят на предмет с различных положений, у каждого глаза своя собственная видимость. Данное явление именуется параллаксом, и землемеры (геодезисты) пользуются им для точного определения расстояния. Из-за малой удаленности глаз друг от друга с их помощью нельзя точно оценить большие расстояния.
    Тогда тем более удивительно, что самый простой астрономический способ определения расстояния основан на параллаксе. Вот как он действует. Если одну и ту же звезду наблюдать в начале и в конце шестимесячного промежутка
    178
    Рис. 6.1. Измерение расстояния на основе параллакса

    Янко Слава
    (Библиотека
    Fort/Da
    ) || http://yanko.lib.ru
    Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР-
    ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
    92 времени, она видна по двум различным зрительным осям (подобно тому как наши глаза видят удаленный предмет с двух точек) (рис. 6.1). Измеряя угол между этими зрительными осями (угол параллакса) и зная, что основание треугольника равно поперечнику орбиты обращения Земли вокруг Солнца, можно вычислить расстояние до звезды в соответствии с тригонометрическими соотношениями. Этот расчет впервые сделал немецкий астроном Фридрих Бессель в 1838 году при измерении расстояния до звезды 61 Лебедя.
    Данный способ измерения расстояния служит основой при определении чаще всего используемой в астрономии единицы —
    парсека
    (
    пк
    ).
    Звезда, угол параллакса которой после шестимесячного промежутка времени составляет 1 с (60 с в 1 мин, 60 мин в 1°, 360° во всей окружности), считается удаленной на один парсек.
    Наша ближайшая звезда Альфа Центавра (в действительности система из трех звезд) находится на расстоянии чуть больше одного парсека. Если отправиться к Альфе Центавра со скоростью звука, путешествие займет свыше миллиона лет. Даже свету с его сумасшедшей скоростью потребуется на это более четырех лет.
    179
    В пределах 10 пк от Земли находится немногим более 300 звезд, так что мы можем определить расстояние до этих ближайших соседей посредством параллакса. Поскольку с удалением звезд уменьшается и угол параллакса, предел для измерений наступает примерно при 100 пк, когда возможно получение приемлемых результатов.
    Таким образом, звезды и галактики на расстоянии тысячи парсек (
    килопарсек, кпк
    )
    или миллионов парсек
    (
    мегапарсек, Мпк
    )
    оказываются слишком далекими, чтобы измерить расстояние до них посредством параллакса.
    Для решения данной задачи разработаны другие способы, которые мы изучим позднее.
    Галактики: первые теории и наблюдения
    Теперь посмотрим, как астрономия пришла к пониманию галактик. Слово
    галактика
    греческое и означает
    «млечный путь». Шведский философ Эмануэль Сведенборг пришел к заключению, что все звезды образуют большое сообщество, где Солнечная система — лишь его часть. В книге
    Principia Rerum Naturalium
    (1734) он предположил, что Солнечная система, состоящая из светила и планет, образовалась из быстро вращающейся туманности. При этом Сведенборг не руководствовался никакими научными наблюдениями, хотя и изучал точные науки. Данные сведения он почерпнул в ходе спиритического сеанса, где якобы присутствовали небесные посланники. Дальнейшие видения побудили Сведенборга предать огласке полученные им сведения богословского свойства, и в итоге из его учения вышла религия [сведенборгиан] «Новая церковь» [именуемая еще «Новым Иерусалимом»].
    Историю галактик продолжил англичанин Томас Райт из Дарема, занимавшийся изготовлением научных орудий и игрушечных солнечных систем, которые продавал вельможам. В книге «Оригинальная теория, или
    Новая гипотеза о Вселенной, основанная на законах природы и объясняющая с помощью математических принципов наиболее важные явления видимого мироздания, в частности Млечного
    180
    Пути» (1750) Райт высказывает мысль, что звезды в Млечном Пути распределены в виде жернова. Он говорил:
    «Глядя всякий раз на небо, никак не могу взять в толк, почему все не идут в астрономы». Как изготовитель научных орудий, он наверняка имел доступ к телескопам. Однако никаких астрономических наблюдений он не издавал. Книга Райта тоже затрагивает религиозные вопросы, например о физическом местонахождении божественного престола.
    Заметка о книге Райта в гамбургском журнале попала на глаза блестящему философу Иммануилу Канту. И хотя Кант неверно истолковал сообщение о работе Райта, ему удалось направить ее в созидательное русло. В
    1755 году Кант предполагает, что Млечный Путь представляет собой линзовидный диск из звезд, вращающийся вокруг своей оси. Затем он утверждает, что размытые световые пятна, именуемые туманностями, на самом деле представляют собой системы звезд, подобные Млечному Пути, но находящиеся на большом удалении. Кант

    Янко Слава
    (Библиотека
    Fort/Da
    ) || http://yanko.lib.ru
    Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР-
    ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
    93 именует их островными вселенными
    *
    . В ту пору
    *
    Ни «линзовидных дисков», ни «островных вселенных» у Канта в его «Всеобщей естественной истории и теории неба...»
    (1755) нет. Вот его слова: «Все неподвижные звезды, доступные глазу в неизмеримой глубине неба, где они кажутся рассеянными с какой-то расточительностью, представляют собой солнца и центры подобных же систем... Скопление звезд, расположенных возле одной общей плоскости, составляет такую же систему, как планеты нашего солнечного мира вокруг
    Солнца. Млечный Путь представляет собой зодиак этих миров высшего порядка... Разве нельзя на основании столь полного сходства в строении прийти к заключению об одинаковой причине и одинаковом способе образования? Но если неподвижные звезды образуют одну систему, размеры которой определяются сферой притяжения центрального тела, то разве не могут возникать еще иные системы солнц и, так сказать, еще иные млечные пути в безграничном мировом пространстве? Мы с изумлением увидели на небе фигуры, которые представляют собой не что иное, как именно подобные системы неподвижных звезд, ограниченные общей плоскостью, — млечные пути, если можно так выразиться, которые представляются нашему глазу при различном положении относительно его в виде эллиптических образований, мерцающих слабым светом из-за бесконечной удаленности от нас...» (
    Кант И.
    Докритические произведения). Далее встречается выражение «рассеянная масса мирозданий»
    (там же).
    181
    не было средств, чтобы прикинуть расстояние до этих туманностей. Даже с помощью Бесселева метода параллакса, разработанного почти столетие спустя, не справиться с такой задачей.
    Итак, начало изучению астрономией галактик положили богословски настроенный мастеровой и философ.
    Следующий важный вклад в понимание галактик суждено было внести ученому-наблюдателю. Любопытно, что его не занимали сами галактики; он составил перечень объектов, которых следовало избегать при поиске комет.
    Шарль Мессье (1730—1817) был столь заядлым охотником за кометами, что король Людовик XV прозвал его
    «кометной ищейкой». За всю жизнь Мессье открыл один или одновременно с кем-то 20 комет и наблюдал еще 24.
    Он часто находил неподвижные объекты, которые не могли быть кометами. Небольшими телескопами, которыми пользовался Мессье — в поперечнике они не превышали трех с половиной дюймов, — невозможно было различить в туманностях отдельные звезды. Наблюдаемые им «туманности» представлялись световыми пятнышками неведомого происхождения. Он составил перечень координат свыше 100 туманностей, снабдив их числами. Например, М31 ныне известна как туманность Андромеды, а М100 (рис. 6.2) — как Спиральная галактика.
    Мессье писал: «К составлению каталога меня подтолкнула туманность I [ныне это Крабовидная туманность], открытая мной повыше верхнего рога Тельца 12 сентября 1758 года в ходе наблюдения за кометой того года.
    Данная туманность так походила на комету своим видом и светимостью, что я решил отыскать и иные туманности, с тем чтобы астрономы более не путали их с кометами». Мессье вызвал недовольство многих астрономов, посвятив комету 1769 года французскому императору Наполеону Бонапарту и истолковав ее как астрологическое знамение рождения Наполеона.
    В начале 1900-х годов наблюдательная астрономия переживала расцвет. Удалось наблюдать сотни тысяч небесных тел. Благодаря щедрости богатых покровителей и неустан-
    182
    Рис. 6.2. Снимки галактики М100 с космического телескопа Хаббла
    ным усилиям ряда женщин-астрономов (см. главку «Чем крупнее телескопы, тем больше расстояния до звезд», с. 189— 193) были составлены каталоги небесных тел с указанием их местонахождения, светимости и некоторых спектральных характеристик. Но расстояния были известны лишь для нескольких сотен ближайших звезд, а подробное строение туманностей и их удаленность от нас оставались неведомыми. Наблюдатели ушли далеко вперед, теоретикам лишь предстояло совершить прорыв.
    Космологический вклад Эйнштейна
    Вклад, значительно способствовавший теоретическому осмыслению природы туманностей, поступил в астрономию из Швейцарии. Марсель Гроссман был одним из выпускников швейцарской Высшей технической школы (Политехникума) в Цюрихе. В его группе готовили учителей математики и физики.
    Один из приятелей Гроссмана не любил занятий и особенно царивших тогда в учебных заведениях строгих поряд-
    183

    Янко Слава
    (Библиотека
    Fort/Da
    ) || http://yanko.lib.ru
    Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР-
    ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
    94 ков, но ему удалось закончить учебу благодаря тому, что Гроссман перед экзаменами снабжал его своими записями лекций. Гроссмана и двух других однокашников оставили при Политехникуме, а их приятелю, не любившему занятий, пришлось довольствоваться временным местом учителя. В 1901 году он писал Гроссману:
    «Я оставил всякую мысль о поступлении в университет». Наконец, отец Гроссмана рекомендовал его приятеля начальнику патентного бюро в Берне, и в 1902 году тот получил работу технического эксперта третьего класса в
    Бернском патентном бюро
    *
    . Следующие семь лет, трудясь на должности патентного эксперта, приятель
    Гроссмана проявил незаурядную творческую жилку, опубликовал несколько научных статей и получил докторскую степень в Цюрихском университете. Свою диссертацию, озаглавленную «Новое определение размеров молекул», он посвятил Марселю Гроссману. На рис. 6.3 представлен сделанный примерно в 1900 году снимок (слева направо) Марселя Гроссмана, его приятеля, Густава Гайсслера и брата Марселя Геральда.
    Приятелем и однокашником Марселя Гроссмана в Политехникуме был не кто иной, как Альберт Эйнштейн.
    Хотя Гроссман стал известным математиком, он не мог тягаться славой со своим приятелем. И все же вскоре
    Эйнштейну вновь понадобилась помощь Гроссмана.
    Работа в патентном бюро нравилась Эйнштейну, но его интересы были гораздо шире. Со своими друзьями, философом Морисом Соловиным и математиком Конрадом Габихтом Эйнштейн создал кружок, шутливо прозванный ими «Академия Олимпия». Проходившие там беседы имели ог-
    *
    Официальное наименование этого учреждения звучало несколько напыщенно: Федеральное ведомство духовной собственности. Оно возникло в 1888 году. Вначале его штат насчитывал всего 7 сотрудников. В 1908 году их было уже 33, в том числе 18 технических экспертов. В русских дореволюционных изданиях это пользовавшееся широкой известностью учреждение именовалось как Федеральное ведомство умственных ценностей.
    184

    Янко Слава
    (Библиотека
    Fort/Da
    ) || http://yanko.lib.ru
    Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР-
    ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
    95
    Рис. 6.3. Марсель Гроссман, Альберт Эйнштейн, Густав Гисслер и Геральд Гроссман
    ромное значение для Эйнштейна. Но еще большее влияние на него оказал Микеланджело Бессо. Эйнштейн пристроил его в 1904 году в патентное бюро, так что в течение нескольких лет они ежедневно вместе ходили на работу. Эйнштейн называл Бессо лучшим в Европе резонатором научных идей, а их у Эйнштейна было предостаточно.
    1905 год один из историков назвал эйнштейновским годом чудес. В тот год авторитетный журнал
    Annalen der
    Physik und Chemie
    опубликовал пять его статей, затрагивающих такие вопросы, как фотоэлектрический эффект, новый спо-
    185
    соб определения размера молекул, броуновское движение, специальная относительность и эквивалентность массы и энергии (более подробно см.: Список идей, 15. Труды Эйнштейна: помимо теории относительности). В статье об относительности Эйнштейн объединил ньютонову механику с максвелловым электромагнетизмом и рассмотрел последствия замены представления об абсолютном характере времени и пространстве законом постоянства скорости света.
    Два года спустя Эйнштейн рассмотрел, как надо изменить ньютоново тяготение для согласования со своими представлениями об относительности. То, что он назовет «счастливейшей мыслью в моей жизни»
    *
    , состояло в полном отождествлении (эквивалентности) поля тяготения с соответствующим ускорением системы отсчета.
    Одним словом, согласно этому принципу находящийся в космическом корабле наблюдатель не в состоянии различить ускорение корабля и воздействие тяготения на основании измерений внутри корабля. Такой сплав, названный принципом эквивалентности, стал отправной точкой для общей относительности.
    Дальнейшие годы знаменовались некоторыми изменениями в жизни Эйнштейна. В 1912 году его зачислили в преподавательский состав Политехникума. В научном плане в своей теории относительности он столкнулся с огромной трудностью. Ведь если все ускоренные системы отсчета тождественны, тогда для них перестает быть верной евклидова геометрия. Эйнштейн помнил, как изучал дифференциальную геометрию (геометрические соотношения между бесконечно малыми величинами) во время учебы, но детали забылись.
    К счастью, одним из сотрудников Эйнштейна в Политехникуме был не кто иной, как Марсель Гроссман, став-
    *
    См.:
    Пайс А.
    Научная деятельность и жизнь Альберта Эйнштейна. М., 1989 (из статьи «Grundgedanken und Methoden der
    Relativitätstheorie in ihrer Entwicklung dargestellt», подготовленной в 1920 году для издающегося с 1869 года британского журнала
    Nature,
    но так и не напечатанной).
    1   ...   7   8   9   10   11   12   13   14   ...   22


    написать администратору сайта