много задач на проценты. Задача Владелец автозаправки повысил цену на бензин на 10%. Заметив, что количество клиентов резко сократилось, он понизил цену на 10 %. Как после этого изменилась начальная цена на бензин (повысилась или понизилась и на сколько ов)
Скачать 100.09 Kb.
|
Карточка1. Задача 1. Владелец автозаправки повысил цену на бензин на 10%. Заметив, что количество клиентов резко сократилось, он понизил цену на 10 %. Как после этого изменилась начальная цена на бензин? (повысилась или понизилась и на сколько % -ов?) Решение: Пусть S0 - начальная цена, S2 - конечная цена, х - искомое число процентов изменения, где х = (1 - S2/S0 )·100% (*) Тогда по формуле Sn = S0 (1 + 0,01р1 )( 1 + 0,01р2 )···( 1 + 0,01рn ) (4), получим S2 = S0 (1 + 0,01·10 )( 1 - 0,01·10) = S0·1,1·0,9 = 0,99·S0. S2 = 0,99·S0; 0,99 = 99%, значение S2 составляет 99% первоначальной стоимости, значит ниже на 100% - 99% = 1%. Или по формуле (*) получаем: х = ( 1 - 0,99 )·100% = 1%. Ответ: понизилась на 1%. Задача 2. Втечении года предприятие дважды увеличивало выпуск продукции на одно и то же число процентов. Найдите это число, если известно, что в начале года года предприятие ежемесячно выпускало 600 изделий, а в конце года стал выпускать ежемесячно 726 изделий. Решение: Пусть S0 - начальная цена, S2 - конечная цена, р - постоянное количество процентов. По формуле (2.1) получаем: р = 100 · (( 726 / 600 )1/2 - 1) = 10%. Ответ: 10% Задача 3. Цена на компьютерную технику были повышены на 44%. После этого в результате двух последовательных одинаковых процентных снижений цена на компьютеры оказалась на 19% меньше первоначальной. На сколько процентов каждый раз понижали цену? Решение: По формуле (4), составляем уравнение S3 = S0 (1 + 0,01·44)( 1 - 0,01р )( 1 - 0,01р) = S0 ·1,44·( 1 - 0,01р )2 = S0 · (1-0,01·19). Решая уравнение, получаем 2 корня: 175 и 25, где 175 не подходит условию задачи. Поэтому р = 25%. Ответ: 25% Задача 4. Для определения оптимального режима повышения цен фирма решила с 1 января повышать цену на один и тот же товар в двух магазинах двумя способами. В одном магазине - в начале каждого месяца (начиная с февраля) на 2%, в другом - через каждые два месяца, в начале третьего (начиная с марта) на одно и то же число процентов, причем такое, чтобы через полгода (1 июля) цены снова стали одинаковыми. На сколько процентов надо повышать цену товара через каждые два месяца, во втором магазине? Решение: Пусть S0 - начальная цена, р - постоянное количество процентов. Тогда через 6 месяцев (после шести повышений на 2%) в первом магазине цена на товар станет равна S0 (1 + 0,01·2)6, а во втором магазине (после трех повышений на р%) цена товара будет равна S0 (1 + 0,01р)3. Получаем уравнение S0 (1 + 0,01·2)6 = S0 (1 + 0,01р)3. Решая его, получаем (1 + 0,01·2)2 = (1 + 0,01р); 1,022= (1 + 0,01р); р = 4,04 Ответ: 4,04% Карточка2. Задача 1. Автомобиль ехал по магистрали с определенной скоростью. Выезжая на проселочную дорогу, он снизил скорость на 20%, а затем на участке крутого подъема он уменьшил скорость на 30%. На сколько процентов эта новая скорость ниже первоначальной? Решение: Пусть V0 - начальная скорость, V - новая скорость, которая получается после двух разных изменений, р - искомое количество процента. Тогда по формуле (4), составляем уравнение V0(1 - 0,01·20)( 1 - 0,01·30) = V0(1 - 0,01р). Решая его получаем V0·0,8·0,7 = V0(1 - 0,01р); р = 44 Ответ: 44% Задача 2. Предположим, что в комнатной температуре за день вода испаряется на 3%. Сколько литров воды останется через 2 дня от 100 литров? А сколько воды испарится? Решение: n=2; р=3%; S0= 100л. Тогда по формуле (2), получаем S2 = S0 ( 1 - 0,01р )2 = 100·(1-0,01·3)2 = 100·0,972 = 94,09; S0 - S2= 100 - 94,09 = 5,91 Ответ: 94,09л.; 5,91л. Задача 3. Вклад, положенный в банк 2 года назад, достиг 11449 рублей. Каков был первоначальный вклад при 7% годовых? Какова прибыль? Решение: n=2; р=7%; S2= 11449; S0= ? В формулу (2.2) S0 = Sn · (1 + 0,01р) -n подставляем данные значения, получаем: S0 = 11449· (1 + 0,01·7) -2 = 11449/ (1,07)2=11449/ 1,1449 = 10000. 11449 - 10000 = 1449 Ответ: 10000 руб.; 1449 руб. 1. В первой смене летнего лагеря отдыхали 550 школьников. Во второй смене число мальчиков сократилось на 4 %, а число девочек увеличилось на 4 %. Всего же во второй смене отдыхало 552 школьника. Сколько мальчиков отдыхало в первой смене? Ответ: 250 мальчиков. 2. Колхоз обычно засевал пшеницей и ячменем 125 га угодий. После увеличения площади посевов пшеницы на 10 % и уменьше ния площади посева ячменя на 8 % занимаемая ими площадь стала равной 124 га. Какова была первоначальная площадь пшеничного поля? Ответ: 50 га. 3. На складе хранилось 500 м3 досок и бруса. После продажи 10 % досок и 15 % бруса осталось 445 м3 пиломатериалов. Сколько ку бических метров досок продали? Ответ: 40 м3. 4. Две фракции областной думы объединяли 60 депутатов. При раздельном голосовании по законопроекту проголосовали «про тив» 15 % членов первой фракции и 10 % - второй, а поддержали законопроект 52 депутата этих фракций. Сколько депутатов входит в первую фракцию? О т в е т: 40 депутатов. 5. В двух школах поселка училось 640 мальчиков. Через год число мальчиков в первой школе увеличилось на 5 %, а во второй - уменьшилось на 10 %, а общее количество мальчиков стало равным 612. Сколько мальчиков училось в первой школе первоначально? Ответ: 240 мальчиков. 6. На двух поддонах лежало 15 000 штук красного и белого кирпича. На строительство перегородки было израсходовано 85 % красного и 90 % белого кирпича, после чего осталось 1830 кирпи чей. Сколько красных кирпичей было первоначально? Ответ: 6600 штук. 7. В контейнере хранилось в общей сложности 500 кг гвоздей и шурупов. После продажи 10 % гвоздей и 5 % шурупов их масса уменьшилась до 460 кг. Сколько килограммов гвоздей продали? Ответ: 30 кг. 1. Найдите 16% от 20000 рублей. 2. Сколько будет, если 20000 руб. увеличить на 16%? 3. Сколько процентов составляют 400 руб. от 200 руб.? 4. 20% некоторой суммы составляют 100 рублей. Какая это сумма? 5. Цена на товар была повышена на 24% и составила 372 рубля. Сколько стоил товар до повышения цены? 6. Цена на товар была снижена на 17% и составила 249 рублей. Сколько стоил товар до снижения цены? 7. Стоимость покупки с учетом двухпроцентной скидки по дисконтной карте составила 1470 рублей. Сколько бы пришлось заплатить за покупку при отсутствии дисконтной карты? 8. Стоимость покупки с учетом трехпроцентной скидки по дисконтной карте составила 1940 рублей. Сколько бы пришлось заплатить за покупку при отсутствии дисконтной карты? 9. Найдите 15% от 60000 рублей. 10. До снижения цен товар стоил 300 рублей, а после снижения цен стал стоить 273 рубля. На сколько процентов была снижена цера товара? 11. До снижения цен товар стоил 400 рублей, а после снижения цен стал стоить 352 рубля. На сколько процентов была снижена цена товара? 12. До повышения цен товар стоил 600 рублей, а после повышения цен стал стоить 678 рублей. На сколько процентов была повышена цена товара? 13. До повышения цен товар стоил 500 рублей, а после повышения цен стал стоить 545 рублей. На сколько процентов была повышена цена товара? 14. Стоимость акций снизилась на 60%. Во сколько раз подешевели акции? 15. Стоимость акций снизилась на 84%. Во сколько раз подешевели акции? 16. Стоимость акций выросла на 117%. Во сколько раз подорожали акции? 17. Стоимость акций выросла на 152%. Во сколько раз подорожали акции? 18. Производство некоторого товара увеличилось в 37 раз. На сколько процентов выросло производство? 19. Производство некоторого товара увеличилось в 96 раз. На сколько процентов выросло производство? 20. Себестоимость изделия снизилась в 8 раз. На сколько процентов снизилась себестоимость? 21. Себестоимость изделия снизилась в 16 раз. На сколько процентов снизилась себестоимость? 22. В сосуд, содержащий 13 литров 18%-го водного раствора некоторого вещества, добавили пять литров воды. Найдите концентрацию получившегося раствора. 23. В сосуд, содержащий 11 литров 17%-го водного раствора некоторого вещества, добавили шесть литров воды. Найдите концентрацию получившегося раствора. 24. Смешали некоторое количество 11 %-го раствора некоторого вещества с таким же количеством 19%- го раствора этого же вещества. Найдите концентрацию получившегося раствора. Задания представлены в виде текстовых задач. Квартирная плата повысилась на 20%. За прошлый месяц заплачено 120рублей. Сколько надо заплатить за текущий месяц? В референдуме приняли участие 18 тыс. человек, что составило 60% всех жителей города, имеющих право голоса. Сколько жителей имеют право голоса? В 5 тысячах из выпущенных 20 тысяч коробочек с жевательной резинкой находится сюрприз. Сколько процентов составили коробочки с сюрпризами? Банком установлен тариф на пролонгацию аккредитива в размере 0,2% за квартал от суммы аккредитива. Вычислите размер комиссионных за пролонгацию аккредитива на сумму 100000 рублей за один квартал? В первом квартале литр молока стоил 10 рублей. Во втором квартале цена на молоко повысилась на 20%, а в третьем еще на 50%. Сколько стал стоить литр молока? Фирма платит разносчикам рекламных изданий за первую партию 10 тыс. рублей, а за каждую следующую в тот же день – на 5% больше по сравнению с предыдущей. Сколько получит человек, если в течение одного дня он разнес 4 партии изданий? 15% жителей города ежегодно слушают ВВС, 45% - радио «Свобода» и 40% - «Голос Америки». Можно ли сказать, что все жители города ежедневно слушают передачи западного радио? Себестоимость товара 30 тыс. рублей. В магазине этот товар продается по цене 90 тыс. руб. Сколько процентов от себестоимости составляет розничная цена. Валовой национальный продукт государства составил 33 млрд. долларов, что соответствует 75% от планировавшегося бюджетом. Найдите плановую величину НВП этого государства. 10. Подоходный налог установлен в размере 13%. До вычета подоходного налога 1% заработной платы отчисляется в пенсионный фонд. Работнику начислено 5420 рублей. Сколько он получит после указанных вычетов? 11. Инфляция составляет 10% каждый месяц. Сколько процентов составила инфляция за два месяца? 12. В результате мелиоративных мероприятий посевные площади увеличились на 150% по сравнению с прошлым годом. Найдите величину посевных площадей этого года, если в прошлом году она была 60 га. 13.Морская вода содержит 5% соли по массе. Сколько килограммов пресной воды нужно добавить к 50 кг морской воды, чтобы содержание соли в полученном растворе составило 2%? 75 кг 14. Морская вода содержит 5% соли по массе. Сколько пресной воды нужно добавить к 30 кг морской воды, чтобы концентрация соли составляла 1,5 %? 70кг 15.Свежие грибы содержат по весу 90% воды, а сухие – 12%. Сколько грибов сухих грибов получится из 22 гк свежих грибов? 2,5 кг 16. К раствору, который содержит 40 г соли, добавили 200 г воды, после чего его концентрация уменьшилась на 10%. Сколько воды содержал раствор и какая была его концентрация? 160г, 20% 17. Кусок сплава меди и цинка массой 36 кг содержит 45% меди. Какую массу меди следует добавить к этому куску, чтобы получился сплав, содержащий 60% меди? 13,5 кг 18.Сплав цинка и меди содержал на 1280 г меди больше, чем цинка. После того как из сплава удалили 60% цинка и 30% меди, его масса стала равной 1512 г. Какова была первоначальная масса сплава в граммах? 2400г 19.Два куска латуни имеют массу 60 кг. Первый кусок содержит 10 кг чистой меди, а второй –8 кг. Сколько процентов меди содержит первый кусок, если второй содержит меди на 15% больше первого? 25% 20. Вычислить вес и процентное содержание серебра в сплаве с медью, зная, что сплавив его с 3 кг чистого серебра, получат сплав, содержащий 90% серебра, а сплавив его с 2 кг сплава, содержащего 90% серебра, получат сплав, содержащий 84% содержания серебра? 2,4 кг, 80% 21. Два раствора, из которых первый содержит 0,8 кг, а второй 0,6 кг безводной кислоты, соединили вместе и получили 10 кг нового раствора серной кислоты. Вычислите вес первого и второго растворов в смеси, если известно, что безводной серной кислоты содержится в первом растворе на 10% больше. 4 кг, 6 кг. 22. В сосуде было 12 л соляной кислоты. Часть кислоты отлили и сосуд долили водой. Затем отлили столько же и долили водой. Сколько жидкости отливали каждый раз, если в сосуде оказался 25% раствор кислоты. 6л 23. Смешали 30% раствор соляной кислоты с 10% и получили 600г 15% раствора. Сколько граммов каждого раствор взяли? 150г, 450г 24. В 500 кг руды содержится некоторое количество железа. После удаления из руды 200 кг примесей, содержащих в среднем 12,5% железа, в оставшейся руде содержание железа повысилось на 20%. Определить какое количество железа осталось в руде? 187,5 кг 25. Имеется кусок сплава меди с оловом общей массой 12 кг, содержащий 45% меди. сколько чистого олова надо прибавитьк этому куску сплава, чтобы получить новый сплав, содержащий 40% меди? 1,5 кг 26. Яблоки при сущке теряют 85% своей массы. сколько надо взять свежих яблок, чтобы после сушки получилось 30кг сушеных? 200 кг 27. В сплаве олова и меди медь составляет 85%. сколько надо взять сплава. чтобы в нем содержалось 4,5 кг олова? 30 кг 28. Зерна кофе при обжарке теряют 12% своей массы. Сколько свежего кофе надо взять, чтобы получить 2,2 кг жареного? 2,5 кг 29. Масса керосина, получаемого при перегонке, составляет 30% начальной массы нефти. Сколько надо взять нефти, чтобы получить 12 т керосина? 40 т 30. В свекле содержится 21% сахара. Сколько надо взять свеклы, чтобы получить 42 кг сахара? 200 кг 31. Морская вода содержит 5% соли. Сколько надо взять морской воды, чтобы после выпаривания получить 20 кг соли? 400 кг 32. При обработке отливки 13% её массы идет в стружку. какова была масса отливки, если масса обработанной детали составила 8,7 кг? 10 кг 33. Железная руда содержит 70% чистого железа. Сколько нужно взять железной руды, чтобы получилось 210 кг чистого железа? 300 кг 34. Сколько килограммов воды нужно выпарить из 0,5 т целлюлозной массы, содержащей 85% воды, чтобы получить массу с содержанием 75% воды? 200 кг 35. 40% раствор серной кислоты разбавили 60% раствором, после чего добавили 5 кг чистой воды и получили 20% раствор. Если бы вместо 5 кг чистой воды добавили 5 кг 80% раствора серной кислоты, то получили бы раствор 70% концентрации. Сколько было 40% и 60% раствора кислоты? 1 кг, 2 кг 36. Сколько 90% и 60% серной кислоты нужно взять, чтобы получить 5,4 кг 80% раствора серной кислоты? 3,6 кг и 1,8 кг 37. Одна руда содержит 72% железа и 28% пустой породы, а другая 56% железа и 42% пустой поролы. Сколько нужно взять первой и второй руды, чтобы получить 10 т руды с содержанием 60% железа? 7,5 т и 2,5 т 38. *Имеются три сплава. Первый содержит 30% никеля и 70% меди; второй – 10% меди и 90% марганца; третий – 15% никеля, 25% меди и 60% марганца. Из них необходимо приготовить новый сплав, содержащий 40% марганца. Какое наибольшее и наименьшее процентное содержание меди может быть в этом сплаве? 40% и 43,1/3% 39. *Имеется три сплава. Первый содержит 70% олова и 30% свинца; второй 80% олова и 20% цинка; третий 50% олова, 10% свинца и 40% цинка. Их них необходимо приготовить слав. содержащий 15% свинца. Какое наибольшее и наименьшее содержание олова может быть в новом сплаве. 40. *Имеются три смеси, составленные из трех элементов А, В и С. В первую месь входят только элементы А и В в весовом отношении 3:5; во вторую смесь входят элементы В и С в весовом отношении 1:2, в третью смесь входят элементы А и С в весовом отношении 2:3. В каком отношении нужно взять эти смеси, чтобы во вновь полученной смеси элементы А, В и С содержались в весовом отношении 3:5:2? 20:6:3 41. При выпаривании из 8 кг рассола получили 2 кг пищевой соли, содержащей 10% воды. Каково % содержание воды в рассоле? 90% 42. Имеется руда с содержанием меди 6% и 11%. сколько «бедной» руды нужно взять, чтобы получить при смешивании с «богатой» 20 т руды с содержанием меди 8%? 12 т 43. Один сплав состоит из двух металлов, входящих в него в отношении 1:2, а другой сплав содержит те же металлы в отношении 2:3. Из скольких частей обоих сплавов можно получить новый сплав, содержащий те же металлы в отношении 17:27? 3 и 7 44. Имеются два раствора одной и той же соли в воде. Для получения смеси, содержащей 10 г соли и 90 г воды, берут первого раствора вдвое больше по массе, чем второго. Через неделю из каждого килограмма первого и второго раствора испарилось по 200 г воды и для получения такой же смеси, как и раньше, требуется первого раствора уже вчетверо больше по массе, чем второго. Сколько граммов соли содержалось первоначально в 100 г каждого раствора? 5 г и 20 г 45. *В пустой резервуар по двум трубам одновременно начинают поступать чистая вода и раствор кислоты постоянной концентрации. После наполнения резервуара в нем получился 5% раствор кислоты. Если бы в тот момент, когда резервуар был наполнен наполовину, подачу воды прекратили, то после наполнения резервуара получили бы 10% раствор кислоты. Определить, какая труба подает жидкость быстрее и во сколько раз? Первая в 2 раза быстрее 46. *Имеются два куска сплава меди и цинка с процентным содержанием меди p% и q% соответственно. В каком отношении нужно взять эти сплавы, чтобы переплавив взятые куски вместе, получить сплав, содержащий r% меди? (r-q)/(p-r) 47. *Три одинаковые пробирки наполнены до половины растворами спирта. После того как содержимое третьей пробирки разлили поровну в первые две, объемная концентрация в первой уменьшилась на 20% от первоначальной, а во второй увеличилась на 10% от первоначального значения. Во сколько раз первоначальное количество спирта в первой пробирке превышало первоначальное количество спирта во второй пробирке? 13:4 Задача 1.Товар стоил тысячу рублей. Продавец поднял цену на 10%, а через месяц снизил её на 10%.Сколько стал стоить товар? Решение. Пусть товар стоил 1000руб., после повышения цены на 10% он стал стоить 1,1*1000 руб. После понижения этой цены на 10%, он стал стоить 0,9*1,1*1000=990 руб. Ответ. 990 руб. Задача 2.Собрали 100 кг грибов. Оказалось, что их влажность 99%. Когда грибы подсушили, влажность снизилась до 98%. Какой стала масса этих грибов после подсушивания? Решение. Так как влажность грибов составляет 99%, это означает, что на так называемое «сухое вещество приходится 1% грибов, т.е 1 кг, после сушки влажность составляет 98%, т.е. на «сухое вещество» приходится 2%, т.е 1кг это 0,02 подсушенных грибов, 1 кг : 0,02=50 кг. Ответ. 50 кг. Задача 3. Цена входного билета на стадион была 1 рубль 80 копеек. После снижения входной платы число зрителей увеличилось на 50% , а выручка выросла на 25% .Сколько стал стоить билет после снижения? Решение. Пусть зрителей, до понижения цены, на стадион приходило А чел. и выручка составляла 1,8А руб. После понижения цены, цена 1,8*р, зрителей стало 1,5А, выручка составляет 1,8*р*1,5*А руб. С другой стороны, выручка повысилась на 25%, т.е. составляет 1,25*1,8А. Получаем 1,8*р*1,5*А=1,25*1,8А., откуда р=12,5/15, тогда билет стоит 1,8*12,5/15=1,5 руб. Ответ.1руб. 50 коп Задача 4. По дороге идут два туриста. Первый из них делает шаги на 10% короче и в то же время на 10% чаще, чем второй. Кто из туристов идет быстрее и почему? Решение. Пусть второй турист делает а шагов, каждый из которых равен в, тогда ав это длина пройденного пути. А первый турист тогда прошел1,1*а*0,9*в=0,99*ав, что меньше ав. Ответ. Второй турист идет быстрее. Задача 5.Цену за товар уменьшили на 10%, а затем еще на 10%. Стоит ли он дешевле, если цену сразу снизить на 20%? Решение. Если товар стоил А руб, после двух понижений он стал стоить 0,9*0,9*А=0,81А. А цену товара сразу понизить на 20%, то он станет стоить 0,8*А , что дешевле. Ответ. Да. Задача 6. Числитель дроби увеличили на 20%. На сколько процентов надо уменьшить её знаменатель, чтобы в итоге дробь возросла вдвое? Решение. Пусть данная дробь, новая дробь. , откуда К=0,6, что означает, что знаменатель нужно уменьшить на 40% Ответ. 40% Задача 7. Матроскин продает молоко через магазин и хочет получать за него 25 рублей за литр. Магазин удерживает 20% стоимости проданного товара. По какой цене будет продаваться молоко в магазине? Решение. Пусть молоко продает магазин по А руб, тогда после удержания 20% стоимости товара, Матроскину остается 0,8*А=25, откуда А=31, 25 руб. Ответ. 31 руб. 25 коп. Задача 8. Один покупатель купил 25% имевшегося куска полотна, второй покупатель 30% остатка, а третий - 40% нового остатка. Сколько (в процентах) полотна осталось непроданным? Решение. Пусть полотна было р . Первый купил 0,25р,, осталось (1-0,25)р полотна, второй покупатель купил 0,3*0,75р=0,225р, осталось 0,75р –0,225р=0,525р, третий купил 0,4*0,525р=0,21р, осталось 0,525р-0,21р=0,315р, что составляет 31,5% от р. Ответ.31,5% Задача 9.Бригада косарей в первый день скосила половину луга и еще 2 га, а во второй день 25% оставшейся части и последние 6 га. Найти площадь луга. Решение. 6 га составляют 75% или0,75=3/4 от оставшейся части после 1 дня работы, т.е.6: 0,75=6 га 8+2=10 га - это половина луга, весь луг 20 га Ответ. 20 га Задача 10.Как изменится в процентах площадь прямоугольника, если его длина увеличится на 30%, а ширина уменьшится на 30%? Решение. АВ- площадь исходного прямоугольника, 1,3*А*0,7*В=0,91АВ – площадь нового прямоугольника, что составляет 91% исходного. Ответ. Уменьшится на 9% Задача 11. В драматическом кружке число мальчиков составляет 80% от числа девочек. Сколько процентов составляет число девочек в этом кружке от числа мальчиков? Решение. Девочек А чел, мальчиков 0,8*А, девочки составляют от мальчиков А/(0,8А)= 1,25, т.е. 125 % от числа мальчиков Ответ. 125% Задача 12. В бассейн проведена труба. Вследствие засорения её приток воды уменьшился на 60%. На сколько процентов вследствие этого увеличится время, необходимое для заполнения бассейна Решение. Пусть Х – объем воды, который должен поступить за время Т при притоке А в ед времени., т.е. Х=АТ. Так как приток уменьшился на 60%, т.е. стал составлять 0,4А, тогда время стало ТК. Получим АТ=0,4А*КТ, откуда К = 2,5, что составляет 250% от времени, необходимого на заполнение бассейна до засорения, т.е. время увеличилось на 150% Ответ. 150% Задача 13.5 литров сливок с содержанием жира 35% смешали с 4 литрами 20%-ных сливок и к смеси добавили 1 литр чистой воды. Какой жирности получилась смесь? Решение.0,35*5+0,2*4=р*(5+4+1), откуда р=0,255, что составляет 25,5% Ответ. 25,5% Задача1. Зонт стоил 360 руб. В ноябре цена зонта была снижена на 15%, а в декабре – ещё на 10%. Какой стала стоимость зонта в декабре? Решение. Стоимость зонта в ноябре составила 85% от 360руб.т. е 360•0,85=306руб. Второе снижение цены происходило по отношению к новой цене зонта; теперь следует искать 90% от 306руб., т.е.306•0,9=275,4руб. Дополнительный вопрос. На сколько процентов по отношению к первоначальной цене подешевел зонт? Решение. Найдём отношение последней цены к исходной и выразим его в процентах. Получим 76,5%. Значит, зонт подешевел на 23,5%. Задача2 . На осенней ярмарке фермер планирует продать не менее одной тонны лука. Ему известно, что при хранении урожая теряется до 15% его массы, а при транспортировке – до 10%. Сколько лука должен собрать фермер, чтобы осуществить свой план? Решение. Просчитаем худший вариант. Пусть нужно собрать Х т лука. Тогда после хранения может остаться 0,85х, то и на ярмарку будет доставлено – 0,9•0,.85х. Составим уравнение 0,.9•0,.85х=1, откуда х1,3. Ответ: не менее 1,3т Задача 3. На сезонной распродаже магазин снизил цены на обувь сначала на24%, а потом ещё на 10%. Сколько рублей можно сэкономить при покупке кроссовок, если до снижения цен они стоили 593 руб.? Решение. В реальной жизни часто вместо точных подсчётов удобно выполнять прикидку. В нашем случае 593 руб.– это примерно 600 руб.; а 24% – это примерно 1/4. Четверть от 600 руб. составляет 150 руб. и составила примерно 450 руб. После второй уценки новая цена кроссовок снизилась ещё примерно на 45 руб. В итоге кроссовки подешевели примерно на 195 руб. |