куча. ср 1 куча. Задание 19. Найдите значение S, при котором Ваня выигрывает своим первым ходом при любой игре Пети Задание 20
Скачать 15.66 Kb.
|
Вопросы 19-21 к задачам 1-3: Задание 19. Найдите значение S, при котором Ваня выигрывает своим первым ходом при любой игре Пети? Задание 20. Найдите минимальное и максимальное значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия: − Петя не может выиграть за один ход; − Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найденные значения запишите в ответе в порядке возрастания. Задание 21 Найдите значение S, при котором одновременно выполняются два условия: – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. (I) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может а) добавить в кучу один камень; б) добавить в кучу два камня; в) добавить в кучу три камня; г) увеличить количество камней в куче в два раза. Игра завершается в тот момент, когда количество камней в куче превышает 33. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 34 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 33. (II) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может а) добавить в кучу один камень; б) добавить в кучу два камня; в) добавить в кучу три камня; г) увеличить количество камней в куче в два раза. Игра завершается в тот момент, когда количество камней в куче превышает 37. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 38 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 37. (I-II) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может а) добавить в кучу один камень; б) добавить в кучу два камня; г) увеличить количество камней в куче в три раза. Игра завершается в тот момент, когда количество камней в куче превышает 64. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 65 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 64. Вопросы 19-21 к задачам 4-6: Задание 19. Найдите минимальное значение S, при котором Ваня выигрывает своим первым ходом при любой игре Пети? Задание 20. Сколько существует значений S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия: − Петя не может выиграть за один ход; − Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Задание 21 Найдите минимальное и максимальное значение S, при которых одновременно выполняются два условия: – у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; – у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Найденные значения запишите в ответе в порядке возрастания. (I-II) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может а) добавить в кучу два камня; б) увеличить количество камней в куче в три раза. Игра завершается в тот момент, когда количество камней в куче становится не менее 45. Если при этом в куче оказалось не более 112 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. В начальный момент в куче было S камней, 1 ≤ S ≤ 44. (I) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может а) добавить в кучу один камень; б) увеличить количество камней в куче в два раза; в) увеличить количество камней в куче в три раза. Игра завершается в тот момент, когда количество камней в куче становится не менее 36. Если при этом в куче оказалось не более 60 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. В начальный момент в куче было S камней, 1 ≤ S ≤ 35. (II) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может а) добавить в кучу один камень; б) увеличить количество камней в куче в два раза; в) увеличить количество камней в куче в три раза. Игра завершается в тот момент, когда количество камней в куче становится не менее 43. Если при этом в куче оказалось не более 72 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. В начальный момент в куче было S камней, 1 ≤ S ≤ 42. Тут свое условие! (I-II) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может а) добавить в кучу сто камней или б) увеличить количество камней в куче в два раза. Например, имея кучу из 10 камней, за один ход можно получить кучу из 110 или 20 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 1000. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 1000 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 999. Задание 19. Сколько существует значений S, при которых Ваня выигрывает первым ходом? Задание 20. Сколько существует значений S, при которых Петя может выиграть своим вторым ходом? Задание 21. Назовите минимальное и максимальное значение S, при которых Ваня выигрывает своим первым или вторым ходом, при этом для любого значения у Вани есть возможность выиграть своим первым ходом (в случае ошибки Пети). 434852 |