Главная страница
Навигация по странице:

  • Цель работы

  • Чрезвычайно опасные

  • Высоко-опасные

  • Умеренно-опасные

  • Заключение Список использованных источников


    Скачать 174 Kb.
    НазваниеЗаключение Список использованных источников
    Дата11.05.2021
    Размер174 Kb.
    Формат файлаdoc
    Имя файлаekologia_1_variant.doc
    ТипРеферат
    #203612



    Содержание

    Введение


    1.Переработка вторичных ресурсов

    2. Состав атмосферы

    Заключение

    Список использованных источников

    Введение



    Все то, что производится, добывается и потребляется, рано или поздно превращается в отходы. Все образующиеся отходы делят на отходы производства и потребления, которые могут находиться в газообразном, жидком, пастообразном или твердом состоянии, представляя собой различную степень опасности и токсичности для окружающей природной среды и человека.

    Отходы в зависимости от токсичности химических веществ, содержащихся в них, проявляют различную степень воздействия на окружающую среду.

    При размещении отходов негативное воздействие их на природную среду достаточно часто сопровождается нарушением ландшафта с изменением отдельных элементов геологической среды, загрязнением воздушного бассейна, вод суши, моря, подземных вод, истощением их ресурсов и деградацией водных экосистем, а также загрязнением и деградацией почв, приводящих к истощению ресурсов растительного и животного мира. Уровень негативного воздействия отходов на природную среду оценивается степенью их токсичности, приводящей к различным степеням экологического неблагополучия в местах образования и размещения отходов. Экологическая обстановка в местах образования и размещения отходов может быть классифицирована следующим образом: относительно удовлетворительная, напряженная, критическая, кризисная и катастрофическая. В зависимости от степени экологического неблагополучия в местах образования и размещения отходов наблюдаются изменения природной среды и деградация естественных экосистем, нередко приводящие к изменению среды обитания и состояния здоровья человека.

    В современный период атмосфера Земли претерпевает множественные изменения коренного характера: модифицируются ее свойства и газовый состав, возрастает опасность разрушения ионосферы и стратосферного озона; повышается ее запыленность; нижние слои атмосферы насыщаются вредными доля живых организмов газами и веществами промышленного и другого хозяйственного происхождения. В следствии огромных выбросов техногенных газов и веществ, достигающих многих миллиардов тонн в год происходит нарушение газового состава атмосферы. Весьма важную роль в составе атмосферы играет двуокись углерода ( углекислый газ ), который играет важную роль не только в жизнедеятельности человека, но и в выполнении атмосферной функции предохранения подстилающей поверхности от перегрева и переохлаждения. Однако, хозяйственная деятельность человека нарушила естественный баланс выделения и ассимиляции СО2 в природе, в результате чего его концентрация в атмосфере увеличивается. Если до 1850 года содержание СО2 в атмосфере Земли составляло 260 - 290 объемных частей на миллион (ч/млн.), то в 2003 этот показатель возрос до 345 ч/млн.

    Наука еще не в полной мере прояснила некоторые важные элементы кругооборота СО2. Остается неясным вопрос о количественных характеристиках связи между увеличением концентрации этого газа в атмосфере и мерой его способности задерживать обратное излучение в космос тепла, получаемого Землей от Солнца. Тем не менее неоспоримый рост концентрации СО2 в атмосфере свидетельствует о глубоком нарушении одного из компонентов глобального равновесия в биосфере, что в сочетании с другими нарушениям может иметь очень серьезные последствия.

    Цель работы: изучение основных ныне существующих и перспективных способов утилизации и переработки промышленных отходов. Изучить состав атмосферы.

    Задачи работы:

    1. Дать понятие промышленных отходов и рассмотреть их классификацию.

    2. Рассмотреть процесс переработки вторичных ресурсов.

    3. Изучить состав атмосферы.

    1.Переработка вторичных ресурсов

    Отходами называются продукты деятельности человека в быту, на транспорте, в промышленности, не используемые непосредственно в местах своего образования и которые могут быть реально или потенциально использованы как сырье в других отраслях хозяйства или в ходе регенерации. Отходами производства являются остатки материалов, сырья, полуфабрикатов, образовавшихся в процессе изготовления продукции и утратившие полностью или частично свои полезные физические свойства. Отходами производства могут считаться продукты, образовавшиеся в результате физико-химической переработки сырья, добычи и обогащения полезных ископаемых, получение которых не является целью данного производства. Отходы потребления – непригодные для дальнейшего использования по прямому назначению и списанные в установленном порядке машины, инструменты, бытовые изделия.

    По возможности использования, различаются утилизируемые и неутилизируемые отходы. Для первых существует технология переработки и вовлечения в хозяйственный оборот, для вторых в настоящее время отсутствует.

    Промотходы зачастую являются химически неоднородными, сложными поликомпонентными смесями веществ, обладающими различными химико-физическими свойствами, представляют токсическую, химическую, биологическую, коррозионную, огне- и взрывоопасность(). Существует классификация отходов по их химической природе, технологическим признакам образования, возможности дальнейшей переработке и использования. В нашей стране вредные вещества характеризуется по четырем классам опасности, от чего зависят затраты на переработку и захоронение (Сметанин, 2003):

    1. Чрезвычайно опасные. Отходы, содержащие ртуть и ее соединения, в том числе сулему (HgCl2), хромовокислый и цианистый калий, соединения сурьмы, в том числе SbCl3 – треххлорную сурьму, бензапирен и др.

    Токсичность соединений ртути заключается во вредном воздействии иона Hg2+. В организм ртуть попадает, как правило, в неионой форме. Ртуть вступает в соединение с белковыми молекулами в крови, в результате чего образуются более или менее прочные комплексы – металлопротеиды. Страдают тиоловые энзимы и в организме возникают глубокие нарушения функций центральной нервной системы, что приводит к инертности корковых процессов в мозге. Воздействие соединений ртути на животных при остром отравлении проявляется в потере аппетита, жажде, слюнотечение, рвота, общая слабость, позднее кровавый понос, катаракта на слизистой глаз, возможные судороги, внезапная смерть при поражении двигательных узлов сердца и спинного мозга. У выживших через 1 – 2 часа поражение желудочно-кишечного тракта, через 5 суток – поражение почек, перерождение клеток печени.

    У человека при отравлении сулемой и другими солями ртути – головные боли, поражение десен, стоматит, набухание лимфатических и слюнных желез, иногда повышенная температура. В тяжелых случаях нефроз в почках и через 5 – 6 дней смерть. В достаточно легких случаях – потеря аппетита, тошнота, рвота (иногда с кровью), слизистый понос (чаще с кровью), язва желудка и двенадцатиперстной кишки. Сначала может возникнуть усиленное мочеотделение, потом почти полное его прекращение. При хроническом отравлении у людей и животных поражается нервная система (резкая переменчивость активности), изменения в клетках коры больших полушарий мозга, ствола спинного мозга, периферийных нервах. Среди людей, больных туберкулезом, высокая смертность.

    Общее воздействие на организм цианистого калия (KCN) и других солей синильной кислоты (HCN) вызывает нарушение дыхания, резкое понижение способностей тканей потреблять доставляемый кислород. При хроническом отравлении возможно нарушение продуцирование гормона щитовидной железой, тяжелое поражение дыхательных путей, головная боль, похудение, нарушение потенции и либидо, снижение функции половых желез развитие анемии, лейкопения, поражение почек, ухудшение зрения и слуха, на коже образуется хроническая экзема. Смертельная доза KCN для человека – 0.12 г., иногда переносятся большие дозы, замедление действия возможно при заполнении желудка пищей.

    Соединения сурьмы вызывают раздражения слизистых дыхательных путей и пищеварительного тракта, кожи. При хроническом отравлении данные вещества способны вызывать нарушение обмена веществ, негативно влияющие на нервную систему и сердце. При гидролизе SbCl3 в организме образуется HCl, приводящая с острому воспалению легких и дыхательных путей и опасному воздействию на пищеварительную систему (хотя несколько меньше). SbCl3 раздражает глаза, вызывает тошноту, рвоту, понос, мышечную слабость при попадании в желудок, задерживает мочеиспускание, в результате – судороги, сердечная слабость, коллапс, смерть.

    Бенз-а-пирен (1,2 – бензпирен) – сильное канцерогенное вещество, получаемое при производстве каменноугольной смолы (содержание 0.001–1%), каменноугольного пека (1.5–2%), сланцевой смолы (до 0.2%), сланцевых масел, – содержится в сырой нефти, нефтепродуктах, древесном дыме, продуктах пиролиза древесины и торфа. 1,2 – бензпирен обладает канцерогенной активностью в отношении человека и животных. Возможно развитие раковых опухолей самых различных органов: легких, желудка, молочных желез и многих других. Действие канцерогенов на организм происходит при его взаимодействии с элементами клетки. Существуют гипотезы, что такие соединения не играют самостоятельной роли, а только создают условия для онкогенных вирусов. ПДК бенз-а-пирена в атмосферном воздухе составляет 0.01 мкг/м3 (Сметанин, 2003)

    1. Высоко-опасные. Отходы, содержащие хлористую медь, содержащие сульфат меди, щавелевокислую медь, трехокисную сурьму, соединения свинца.

    Свинец – яд, действующий на все живое, в особенности на нервную систему, кровь, сосуды; в меньшей степени действует на эндокринную и пищеварительную системы. Активно влияет на синтез белка, энергетический баланс клетки и ее генного аппарата, возможно денатуративное действие, подавление ферментативных процессов, выработка неполноценных эритроцитов из-за поражения кроветворных органов, нарушение обмена веществ.

    Медь содержится в организме главным образом в виде комплексных органических соединений и играет важную роль в кроветворении. Во вредном действии избытка решающую роль, по-видимому, играет реакция Cu2+ с SH-группами ферментов (фриден). С колебаниями содержания Cu в сыворотке и коже связано появление депигментации кожи. Реакции соединений меди с белками тканей верхних дыхательных путей и желудочно-кишечного тракта.

    Токсичность CuCl2 проявляется как действие Cu2+ и образующейся в организме соляной кислотой.

    Попадание в желудок животных сульфата меди (CuSO4) вызывает анемию, язву желудка, изменения в печени, кровоизлияние в почках и семенниках, смерть. При вдыхании – воспаление верхних дыхательных путей и желудочно-кишечного тракта, поражение центральной нервной системы.

    У людей попадание CuSO4 или Cu(CH3COO)2 в желудок вызывает тошноту, рвоту, боли в животе, понос, быстрое появление гемоглобина в крови и моче, желтуха, анемия, при почечной недостаточности – смерть. При хронической интоксации медью и ее солями – функциональное расстройство нервной системы, нарушение функции печени и почек (Сметанин, 2003).

    1. Умеренно-опасные. Отходы, оксиды свинца (PbO, PbO2, Pb3O4), хлорид никеля, четыреххлористый углерод.

    При остром травлении хлоридом никеля (NiCl2) возникает возбуждение, угнетение; покраснение слизистых оболочек и кожи; понос. Длительное воздействие вызывает снижение числа эритроцитов, но многими животными это переносится не очень болезненно.

    1. Малоопасные. Отходы, содержащие сульфат магния, фосфаты, соединения цинка, отходы обогащения полезных ископаемых флотационным способом с применением аминов.

    Mg способствует изменениям содержания SH-групп во внутренних органах, нарушению нуклеинового обмена. У людей поражается носовая полость, выпадают волосы. Действие собственно MgSO4 на кожу приводит к дерматологическим заболеваниям.

    Фосфаты – смеси различных веществ, среди которых все или часть соединения фосфора; многие из них применяются в качестве удобрений. Поскольку анион фосфорной кислоты является физиологическим, общая токсическое действие ее солей возможна лишь при весьма высоких дозах.

    Попадание пыли фосфатов в организм развивает пневмосклероз, сокращение бронхов и кровеносных сосудов. Токсичность многих фосфоритов зависит от примеси фтора. Наиболее ядовита нитрофоска – смесь моно- и диаммония фосфатов с KNO3.

    При контакте с фосфатами у человека могут развиваться дерматиты: сыпь, жжение и зуд, отек кожи лица – жжение в глазах, слезоточивость, выпадение радужной оболочки, хотя быстро отходящие. Возможно нарушение менструального цикла. Течение в целом благоприятное, но при осложнениях возможно развитие пневмонии бронхита.

    Хлорид цинка (ZnCl2), используемый для консервирования древесины и в целлюлозно-бумажной промышленности, у животных вызывает развитие злокачественных опухолей в легких и половых органах, нарушение твердости костей и зубов. У человека поражаются дыхательные пути, иногда желудочно-кишечный тракт, реже язва желудка. ПДК хлорида цинка – 1 мг/м2.

    Сульфат цинка или цинковый купорос (ZnSO4 · 7H2O) – раздражитель дыхательных путей животных, желудочно-кишечного тракта. Вызывает малокровие, задержку роста. У человека может развиться повышенная заболеваемость органов дыхания, пищеварения, кровообращения, кожи (Сметанин, 2003).

    Принадлежность к группам определяется по классификатору промышленных отходов, расчетным путем, если известны гигиенические параметры вещества (например, ПДК) и экспериментальным путем. Отходы всех классов делятся на твердые, пастообразные, жидкие, пылевидные или газообразные. Твердые отходы: пришедшая в негодность тара из металлов, дерева, картона, пластмасс, обтирочные материалы, отработанные фильтроматериалы, обрезки полимерных труб, кабельной продукции. Пастообразные: шламы, смолы, осадки с фильтров и отстойников от очистки емкостей теплообменников. Жидкие: сточные воды, содержащие органические и неорганические, не подлежащие приему на биоочистку ввиду высокой токсичности. Пылевидные (газообразные): сдувки от дыхательных трубок емкостного оборудования, выбросы из участков обезжиривания, окраски продукции. По химической устойчивости отходы различаются: взрывоопасные, самовозгорающиеся, разлагающиеся с выделением ядовитых газов, устойчивые. Отходы могут быть растворимые и нерастворимые в воде. По происхождению: органические, неорганические, смешанные отходы.

    В промышленно развитых странах доля расходов на реализацию экологичных способов производства от стоимости конечной продукции 30 – 50%. В нашей стране до сих пор экономика промышленного производства недостаточно учитывает или не учитывает совсем убытки от деградации природной среды, себестоимость продукции определяется без учета стоимости природы.

    Важность экономного и рационального использования природных ресурсов не требует обоснований. В мире непрерывно растет потребность в сырье, производство которого обходится всё дороже. Будучи межотраслевой проблемой, разработка малоотходных и безотходных технологий и рациональное использования вторичных ресурсов требует принятия межотраслевых решений.

    Вторичные материалы и ресурсы (ВМР) – отходы производства и потребления, которые на данном этапе развития науки и техники могут быть использованы в народном хозяйстве как на предприятии, где они были образованы, так и за его пределами. К ВМР не относятся возвратные отходы производства, используемые повторно в качестве сырья технологического процесса, в котором образуются.

    Побочные продукты и отходы – возможное сырье для других производств. Побочные продукты могут быть планируемыми и давать прибыль с их продажи или использования. Отходы – нежелательные, но неизбежные продукты.

    Классифицируются ВМР по следующим критериям:

    1. По отраслям промышленности или откуда исходят отходы;

    2. По технологическим процессам;

    3. По видам ресурсов;

    4. По степени и возможности использования;

    5. По агрегатному состоянию.

    В зависимости от возможности использования ВМР подразделяются:

    1. Реально возможные к использованию, т.е. существуют эффективные условия переработки и использования;

    2. Потенциально возможные к использованию, ВМР, использование которых пока экономически и технически нецелесообразно.

    По источникам своего появления существуют ВМР:

      1. Отходы промышленного производства и строительства – остатки сырья, материалов или полуфабрикатов, пригодные к использованию в качестве сырья, вспомогательных материалов или готовой продукции;

      2. Отходы сферы потребления:

        1. Отходы средств производства, потерявшие непригодность для дальнейшего использования,

        2. Отходы предметов потребления – изделия непригодные для использования по назначению, но потенциально годные как вторичное сырье,

        3. Твердые бытовые отходы, образующиеся у населения в процессе жизнедеятельности и вряд ли имеющие пригодность;

    1. Отходы сферы обращения, т.е. материалы, пришедшие в негодность из-за неосторожной транспортировки, складирования и погрузки-разгрузки.

    Кроме этого ВМР могут быть использованы в местах своего образования или в других отраслях хозяйства.

    Малоотходные и безотходные технологии (МБТ), как правило, ориентированы на наиболее важные отрасли народного хозяйства: производство и рациональное использование металлов, стройматериалов, древесины, полезных ископаемых. Существует несколько основных направлений по осуществлению МБТ:

    1. Создание и внедрение процессов комплексной переработке сырья без образования отходов;

    2. Переработка всех видов отходов производства и потребления с получением товарной продукции;

    3. Выпуск новых видов продукции с учетом требований ее повторного использования;

    4. Применение замкнутых систем промышленного водоснабжения с использованием осадков очистных сооружений;

    5. Организация безотходных территориально-промышленных комплексов и экономических регионов.

    При этом необходимо соблюдать ряд условий:

    1. Самоочевидное использование всех компонентов того или иного сырья, которые обычно не находят применения вследствие отсутствия необходимых производственных условий и навыков обработки, и причисляются к отходам;

    2. Взаимосвязь с экологической обстановкой, в которой реализуются проекты (выбросы в атмосферу, водоемы, почву, отчуждение пахотных или пригодных для других целей земель под захоронение или складирование);

    3. Возможность вовлечения в хозяйственный оборот ресурсов, ранее не использовавшихся;

    4. Применение одной или минимума прогрессивных операций в общей технологической цепи приводит к необходимости переводить всю технологическую систему на новый уровень;

    5. Возможность получения новых материалов с необходимыми характеристиками;

    6. Улучшение условий труда за счет сокращения процессов, сопровождаемых выделением вредных газов и пыли. Устранение вредных компонентов в качестве промежуточных продуктов и катализаторов.

    Многостороннее и глубокое освоение безотходных производств – долговременное и кропотливое дело, которым предстоит заниматься ряду поколений ученых, инженеров, техников, экологов, экономистов, рабочих разного профиля и многих других специалистов. Полностью безотходное производство – далекая перспектива, но необходимо уже сейчас решать эту задачу, как на общеэкономическом уровне, так и в отдельных отраслях хозяйства.

    Переработка руд черных и цветных металлов, их обогащение, литье, прокат, металлообработка – источник потерь колоссального количества металлов.

    Задача комплексного использования сырья в металлургии – рациональная полнота извлечения основных и сопутствующих элементов, утилизация отходов добычи, обогащения руд без нанесения урона окружающей среде. Кроме этого металлургия является весьма земле- и водоемкой отраслью. Несмотря на наличие технологий извлечения ценных попутных компонентов из железной руды на большинстве комплексных месторождений, полезные материалы сбрасываются в отвалы. Среди ценных компонентов руд черных металлов (Fe, Mn, Cr) встречаются W, Ti, Co, Ni, Zn, Cu, редкие металлы. При обогащении и обработке руд большое количество отходов при соответствующей обработке может стать товарными продуктами. Часто в попутно извлекаемой породе (особенно при открытом способе добычи) содержатся многие нерудные полезные ископаемые, среди них (Равич и др., 1996): мел, пригодный для известкования почв и наполнителя при производстве красок; сланцы для изготовления щебня; глины и суглинки – сырье для фаянсовой промышленности и изготовления технической керамики, эмалей, цветного стекла; кварцевые пески для стекольной промышленности; мергель, являющийся сырьем для изготовления извести и цемента; граниты и гнейсы.

    Шлак – ценное сырье для строительной и дорожно-строительной отраслей. Шлаковый щебень в 1.5–2 раза дешевле природного, шлаковая пемза – втрое дешевле керамзита и требует меньше удельных затрат. Использование гранулированного шлака в цементной промышленности увеличивает выход цемента, снижает себестоимость и удельные затраты на его производство по сравнению с естественным сырьем – цементным клинкером. Применение шлаков при вторичной переработке металлов для раскисления стали, сокращает расход дефицитного ферросилиция. Допустимо даже применение металлургических шлаков в качестве абразивного материала для очистки днищ судов. Конвертерные шлаки могут использоваться в гидротехническом строительстве для обсыпки дамб вместо грунта.

    Для доизвлечения железа из отходов применяется обратная флотация хвостов, прямая флотация руды, сухая магнитная сепарация, магнитно-флотационный способ.

    Использование шламов уменьшает содержание железа в доменной шихте, снижает производительность доменных печей, увеличивает расход кокса.

    Истощение богатых месторождений хромовых руд вызвало необходимость постоянно наращивать мощности по добыче и обогащению бедных руд или руд, недостаточно эффективно обогащаемых механическими методами. Для этого был разработан специальный процесс, предусматривающий прокалку на воздухе (630–750°С) дробленой руды (частицы менее 15 мм), измельчение пека (до 0,1 мм), приготовления водной суспензии, ее карбонатизация – так можно получить углеродистый феррохром вместо кондиционной руды и кварцита.

    Во всех металлургических процессах образуется значительное количество пыли, которую необходимо улавливать и утилизировать с целью извлечения содержащихся в них металлов и поддержания необходимого уровня охраны окружающей среды.

    Для этого применимы системы сухого и мокрого пылеулавливания. Основная проблема при улавливании металлургической пыли – повышенное содержание цинка и свинца, которые нарушают процессы пылеулавливания и собственно выплавки.

    В США Zn и Pb выделяются путем сбора пыли, содержащей кроме них железо, и последующего дробления так, что более мелкие частицы состоят в основном из соединений цинка и свинца, а более крупные в основном из Fe2O3, что основано на различной хрупкости упомянутых соединений. Кроме этого используется восстановительный обжиг окускованной пыли, возгонка с улавливанием конденсата, магнитная сепарация и флотация. В Германии для данных целей используются растворы серной, азотной или уксусной кислот, которые способны растворить почти весь Zn, но при малых его концентрациях раствориться может и железо. В Японии разделение Fe- и Zn-содержащих отходов обычной магнитной сепарацией. В Бельгии и Люксембурге цинк и свинец из Fe-содержащих отходов выделяются методом флотации и экстракции щелочными растворами.

    Кроме оксидов железа, свинца и цинка пыль и шламы содержат оксиды Mn, Mg, Ca, Cr, Ni, Cd и других элементов, которые можно использовать.

    Пыли и шламы ферросплавного производства, состоящие главным образом из аморфного диоксида кремния, пригодного для промышленного и жилищного строительства.

    Особое место занимают установки улавливания SOX и NOX, т.к. этот процесс весьма затруднителен вследствие низких концентраций данных веществ.

    Существует опыт использования шламов сероочистки после мокрой известковой обработки для мелиорации почв, что увеличивает содержание в почве кальция, магния, кремния и уменьшает количество алюминия, меди, цинка, мышьяка, марганца. Действие подобного рода удобрений не ослабевает в течение пяти лет и прибавляет урожай зерновых и кормовых культур на 25–30% (4 – 5 т шлама на 1 га).

    Нефелин – один из компонентов аппатито-нефелиновых руд, являющихся сырьем для химической промышленности, содержит, помимо фосфора, алюминий, натрий, калий, титан, железо, стронций, редкие металлы. Нефелин является альтернативой бокситам, сырью для алюминиевой промышленности и месторождения которых постоянно истощается. Из попутных продуктов, получающихся при переработке нефелиновых руд в глинозем, можно производить и уже производятся содовые продукты и цемент. Существуют два основных способа переработки нефелиновых руд:

    Спекательно-щелочной способ. Сущность метода заключается в высокотемпературном разложении нефелина в присутствии СаСО3. При этом содержащиеся в нефелине глинозем щелочи образуют алюминаты Na и K, а кремнезем – дикальциевый силикат. Путем дальнейшей переработки получаемых продуктов обеспечивается получение глинозема, содо-поташного раствора, используемого для производства соды и поташи, и нефелинового шлама – сырья для производства цемента.

    Гидрохимический способ. Данный метод основан на автоклавном разложении нефелина концентрированным раствором едкой щелочи в присутствии извести. В результате образующиеся из алюминатов и силикатов щелочные алюмосиликаты остаются в осадке. Процесс оптимально протекает при 260–300°С и 3 МПа. Однако гидрохимический способ переработки нефелиносодержащего сырья требует большое количество щелочи, высокий расход тепла и повышенного водного баланса.

    На пути к созданию экологичной и малоотходной металлургии зарубежными государствами был накоплен немалый опыт. В разных странах мира применяются различные методы утилизации и переработки отходов металлургии: в автодорожном и железнодорожном строительстве, в сельском хозяйстве в качестве удобрений, в строительной промышленности и других отраслях.

    Несомненное лидерство в этом принадлежит Японии. При выплавке марганцевых сплавов образуется большое количество газов (700 м3/г углеродистого ферромарганца), часть которого (СО2) весьма эффективно (на 84%) используется в качестве источника тепла сушки сырых материалов, что позволяет сэкономить до 16 млн. т в год мазута. Доменный газ применяется для производства метанола, этанола, этиленгликоля, этилена, пропилена, уксусной кислоты, коксовый газ – в производстве метанола и аммиака.

    ТЭК – один из крупнейших загрязнителей окружающей среды твердыми, жидкими и пылевидными отходами, т. к. сам процесс производства тепловой или электрической энергии подразумевает сжигание органического топлива с неизбежным образованием токсичных компонентов. Кроме этого с отходами добычи и обогащения топлива теряется большое его количество.

    Существует классификация на основе литологического состава отходов добычи и обогащения углей:

    • Глинистые (> 50% глин);

    • Песчаные (> 40% песчаника и кварцита);

    • Карбонатные (> 20% карбонатов).

    Кроме этого отходы различаются по физико-химическим и теплофизическим свойствам, по характеристике органического вещества и др.

    Породы вскрыши, отличающиеся высоким содержанием минеральных веществ, могут быть использованы для энергетических целей после предварительного обогащения с получением кондиционного по зольности продукта. Породы вскрыши могут применяться как закладочный материал для рекультивации земель, а шахтные – для закладки шахтного пространства. Возможно применение даже без селективной обработки слагающих литологических разностей как сырье для производства пористых заполнителей для легких бетонов, керамических материалов, при строительстве дамб и других сооружений, кислотостойких мастик, в строительстве домов и дамб, в фильтровых установках.

    Шахтные породы часто содержат большое число микроэлементов, необходимых для питания растений, поэтому могут применяться в качестве удобрений почв, разбалансировка которых происходит в результате интенсификации и химизации сельского хозяйства.

    Отходы углеобогащения, содержащие большое количество горючей массы, могут быть подвергнуты дополнительному обогащению с получением кондиционного по зольности твердого топлива или непосредственно использованы для сжигания и газификации. Возможно сжигание высокозольных отходов углеобогащения в пылеватом состоянии на электростанциях, в том числе на крупных, при этом уменьшаются выбросы SOX и NOX в окружающую среду. В некоторых зарубежных странах нашли применение плазменные печи для переплавки легированных отходов и восстановительной плавки. Для этой цели разработаны и используются разнообразные генераторы плазмы и дуговые плазменные горелки разной мощности, где возможно восстановление руд отходами углеобогащения и выработка некоторого количества электроэнергии за счет отходящих газов.

    В результате гравитационной сепарации некоторых углей можно определить высокозольные фракции, в которых содержатся ряд микроэлементов (Ag, As, Cd, Mn, Mo, Ni, Pb и другие) в 1.3 – 1.4 раза выше, чем в исходных углях. Бульшая часть микроэлементов может быть извлечена из продуктов термической обработки или обогащения твердого горючего.

    С помощью биологических методов можно извлекать из углей и части угольных отходов пиритную и органическую серу, различные металлы (Mn, Ni, Co, Zn, Ca, Al, Cd) золу, кислород- и азотсодержащие соединения. Очистка угля может осуществляться за 6 суток на 93% при применении термофильных бактерий и 18 суток мезофильными бактериями.

    В связи с грядущим в ближайшие десятилетия истощением запасов угля, нефти, природного газа возникла потребность поиска менее дорогих, но технологически более простых в переработке и использование. Важнейшим, в связи с этим, источником для восполнения энергобаланса, производства чистых энергосистем и многих, остро необходимых стране продуктов становятся горючие сланцы. Из сланцев можно получить: мазут, автомобильный бензин, газ для бытовых нужд, жидкое синтетическое топливо.

    2. Состав атмосферы

    Атмосфера – это воздушная оболочка Земли. Простирающаяся вверх на 3000 км от земной поверхности. Ее следы прослеживаются до высоты до 10 000 км. А. имеет неравномерную плотности 50 5 ее массы сосредоточены до 5 км, 75 % – до 10 км, 90 % до 16 км. Атмосфера состоит из воздуха – механической смеси нескольких газов. Азот (78 %) в атмосфере играет роль разбавителя кислорода, регулируя темп окисления, а, следовательно, скорость и напряженность биологических процессов. Азот – главный элемент земной атмосферы, который непрерывно обменивается с живым веществом биосферы, причем составными частями последнего служат соединения азота (аминокислоты, пурины и др.). Извлечение азота из атмосферы происходит неорганическим и биохимическим путями, хотя они тесно взаимосвязаны. Неорганическое извлечение связано с образованием его соединений N2O, N2O5, NO2, NH3. Они находятся в атмосферных осадках и образуются в атмосфере под действием электрических разрядов во время гроз или фотохимических реакций под влиянием солнечной радиации.

    Биологическое связывание азота осуществляется некоторыми бактериями в симбиозе с высшими растениями в почвах. Азот также фиксируется некоторыми микроорганизмами планктона и водорослями в морской среде. В количественном отношении биологическое связывание азота превышает его неорганическую фиксацию. Обмен всего азота атмосферы происходит примерно в течение 10 млн. лет. Азот содержится в газах вулканического происхождения и в изверженных горных породах. При нагревании различных образцов кристаллических пород и метеоритов азот освобождается в виде молекул N2 и NH3. Однако главной формой присутствия азота, как на Земле, так и на планетах земной группы, является молекулярная. Аммиак, попадая в верхние слои атмосферы, быстро окисляется, высвобождая азот. В осадочных горных породах он захороняется совместно с органическим веществом и находится в повышенном количестве в битуминозных отложениях. В процессе регионального метаморфизма этих пород азот в различной форме выделяется в атмосферу Земли.

    Кислород (21 %) используется живыми организмами для дыхания, входит в состав органического вещества (белки, жиры, углеводы). Озон О3. задерживает губительную для жизни ультрафиолетовую радиацию Солнца.

    Кислород – второй по распространению газ атмосферы, играющий исключительно важную роль во многих процессах биосферы. Господствующей формой его существования является О2. В верхних слоях атмосферы под влиянием ультрафиолетовой радиации происходит диссоциация молекул кислорода, а на высоте примерно 200 км отношение атомарного кислорода к молекулярному (О : О2) становится равным 10. При взаимодействии этих форм кислорода в атмосфере (на высоте 20-30 км) возникает озоновый пояс (озоновый экран). Озон (О3) необходим живым организмам, задерживая губительную для них большую часть ультрафиолетовой радиации Солнца.

    Содержание свободного кислорода в земной атмосфере отражает баланс между его фотосинтезирующей продукцией и процессами поглощения (окисление органики, деструкция вещества мертвых организмов). Расчеты показывают, что кислород в атмосфере Земли обновляется в течение 3-4 тыс. лет, т.е. относится к весьма мобильным компонентам газовой оболочки.

    На ранних этапах развития Земли свободный кислород возникал в очень малых количествах в результате фотодиссоциации молекул углекислого газа и воды в верхних слоях атмосферы. Однако эти малые количества быстро расходовались на окисление других газов. С появлением в океане автотрофных фотосинтезирующих организмов положение существенно изменилось. Количество свободного кислорода в атмосфере стало прогрессивно возрастать, активно окисляя многие компоненты биосферы. Так, первые порции свободного кислорода способствовали прежде всего переходу закисных форм железа в окисные, а сульфидов в сульфаты.

    В конце концов количество свободного кислорода в атмосфере Земли достигло определенной массы и оказалось сбалансированным таким образом, что количество производимого стало равно количеству поглощаемого. В атмосфере установилось относительное постоянство содержания свободного кислорода.



    Рисунок 1. Геохимический круговорот кислорода.

    Углекислый газ, идет на образование живого вещества, а вместе с водяным паром создает так называемый «оранжерейный (парниковый) эффект».

    Углерод (углекислота) – его большая часть в атмосфере находится в виде СО2 и значительно меньшая в форме СН4. Значение геохимической истории углерода в биосфере исключительно велико, поскольку он входит в состав всех живых организмов. В пределах живых организмов преобладают восстановленные формы нахождения углерода, а в окружающей среде биосферы – окисленные. Таким образом, устанавливается химический обмен жизненного цикла: СО2 ↔ живое вещество.

    Источником первичной углекислоты в биосфере является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних горизонтов земной коры. Часть этой углекислоты возникает при термическом разложении древних известняков в различных зонах метаморфизма. Миграция СО2 в биосфере протекает двумя способами.

    Первый способ выражается в поглощении СО2 в процессе фотосинтеза с образованием органических веществ и в последующем захоронении в благоприятных восстановительных условиях в литосфере в виде торфа, угля, нефти, горючих сланцев. По второму способу миграция углерода приводит к созданию карбонатной системы в гидросфере, где СО2 переходит в Н2СО3, НСО3-1, СО3-2. Затем с участием кальция (реже магния и железа) происходит осаждение карбонатов биогенным и абиогенным путем. Возникают мощные толщи известняков и доломитов. По оценке А.Б. Ронова, соотношение органического углерода (Сорг) к углероду карбонатному (Скарб) в истории биосферы составляло 1:4.

    Наряду с глобальным круговоротом углерода существует еще ряд его малых круговоротов. Так, на суше зеленые растения поглощают СО2 для процесса фотосинтеза в дневное время, а в ночное – выделяют его в атмосферу. С гибелью живых организмов на земной поверхности происходит окисление органических веществ (с участием микроорганизмов) с выделением СО2 в атмосферу. В последние десятилетия особое место в круговороте углерода занимает массовое сжигание ископаемого топлива и возрастание его содержания в современной атмосфере.

    Аргон – третий по распространению атмосферный газ, что резко отличает его от крайне скудно распространенных других инертных газов. Однако аргон в своей геологической истории разделяет судьбу этих газов, для которых характерны две особенности:

    необратимость их накопления в атмосфере;

    тесная связь с радиоактивным распадом определенных неустойчивых изотопов.

    Инертные газы находятся вне круговорота большинства циклических элементов в биосфере Земли.

    Все инертные газы можно подразделить на первичные и радиогенные. К первичным относятся те, которые были захвачены Землей в период ее образования. Они распространены крайне редко. Первичная часть аргона представлена преимущественно изотопами 36Аr и 38Аr, в то время как атмосферный аргон состоит полностью из изотопа 40Аr (99,6%), который, несомненно, является радиогенным. В калийсодержащих породах происходило и происходит накопление радиогенного аргона за счет распада калия-40 путем электронного захвата: 40К + е → 40Аr.

    Поэтому содержание аргона в горных породах определяется их возрастом и количеством калия. В такой мере концентрация гелия в породах служит функцией их возраста и содержания тория и урана. Аргон и гелий выделяются в атмосферу из земных недр во время вулканических извержений, по трещинам в земной коре в виде газовых струй, а также при выветривании горных пород. Согласно расчетам, выполненным П. Даймоном и Дж. Калпом, гелий и аргон в современную эпоху накапливаются в земной коре и в сравнительно малых количествах поступают в атмосферу. Скорость поступления этих радиогенных газов настолько мала, что не могла в течение геологической истории Земли обеспечить наблюдаемое содержание их в современной атмосфере. Поэтому остается предположить, что большая часть аргона атмосферы поступила из недр Земли на самых ранних этапах ее развития и значительно меньшая добавилась впоследствии в процессе вулканизма и при выветривании калийсодержащих горных пород.

    Таким образом, в течение геологического времени у гелия и аргона были разные процессы миграции. Гелия в атмосфере весьма мало (около 5*10-4%), причем «гелиевое дыхание» Земли было более облегченным, так как он, как самый легкий газ, улетучивался в космическое пространство. А «аргоновое дыхание» – тяжелым и аргон оставался в пределах нашей планеты. Большая часть первичных инертных газов, как неон и ксенон, была связана с первичным неоном, захваченным Землей в период ее образования, а также с выделением при дегазации мантии в атмосферу. Вся совокупность данных по геохимии благородных газов свидетельствует о том, что первичная атмосфера Земли возникла на самых ранних стадиях своего развития.

    В атмосфере содержится и водяной пар и вода в жидком и твердом состоянии. Вода в атмосфере является важным аккумулятором тепла.

    В нижних слоях атмосферы содержится большое количество минеральной и техногенной пыли и аэрозолей, продуктов горения, солей, спор и пыльцы растений и т.д.

    До высоты 100-120 км, вследствие полного перемешивания воздуха состав атмосферы однороден. Соотношение между азотом и кислородом постоянно. Выше преобладают инертные газы, водород и др. В нижних слоях атмосферы находится водяной пар. С удалением от земли содержание его падает. Выше соотношение газов изменяется, например на высоте 200-800 км, кислород преобладает над азотом в 10-100 раз.

    Первичная атмосфера Земли состояла главным образом из водяных паров, водорода и аммиака. Под воздействием ультрафиолетового излучения Солнца водяные пары разлагались на водород и кислород. Водород уходил в космическое пространство, кислород вступал в реакцию с аммиаком и образовывались азот и вода. В начале геологической истории Земля благодаря магнитосфере, изолировавшей её от солнечного ветра, создала вторичную собственную углекислую атмосферу. Углекислый газ поступал из недр при интенсивных вулканических извержениях. С появлением в конце палеозоя зеленых растений кислород стал поступать в атмосферу в результате разложения углекислого газа при фотосинтезе, и состав атмосферы принял современный вид. Современная атмосфера в значительной степени продукт живого вещества биосферы. Полное обновление кислорода планеты живым веществом происходит за 5200-5800 лет. Вся его масса усваивается живыми организмами приблизительно за 2 тыс. лет, вся углекислота – за 300-395 лет.

     

    Состав первичной и современной атмосферы Земли

    Газы

    Состав земной атмосферы

    При образовании*

    В настоящее время

    Азот N2

    1,5

    78

    Кислород О2

    0

    21

    Озон О3

    -

    10-5

    Углекислый газ СО2

    98

    0,03

    Оксид углерода СО

    -

    10-4

    Водяной пар

    0,4

    0,1

    Аргон Аr

    0,19

    0,93

     

    Также в первичной атмосфере присутствовали метан, аммиак, водород и др. Свободный кислород появился в атмосфере 1,8-2 млрд. л.н.

    Заключение



    Промышленность негативно воздействует на окружающую среду и биосферу.

    При разработке новых ресурсосберегающих и экологичных технологических процессов, необходимо обезвреживание отходов на стадии вывода из технологического процесса. Целесообразно захоронение отходов в специально созданных хранилищах, где можно будет захоронить промышленные отходы для их использования в будущем.

    Усилия зарубежных стран направлены, на предупреждение и минимизацию образования отходов, а затем на их рециркуляцию, вторичное использование и разработку эффективных методов окончательной переработки, обезвреживания и окончательного удаления.

    Также разрабатываются малоотходные и безотходные технологии и методы комплексного использования отходов промышленности. Малоотходные и безотходные технологии ориентированы на отрасли народного хозяйства: производство и рациональное использование металлов, стройматериалов, древесины, полезных ископаемых. Комплексное использование сырья в металлургии – извлечение основных и сопутствующих элементов, утилизация отходов добыча, обогащения руд без нанесения урона окружающей среде. При производстве тепловой и электрической энергии происходит сжигание органического топлива с образованием токсических компонентов. Из всех типов минерального сырья особое место занимают агрохимические фосфорсодержащие руды, от них зависит плодородие почв.

    Атмосфера – это воздушная оболочка Земли. Простирающаяся вверх на 3000 км от земной поверхности. Ее следы прослеживаются до высоты до 10 000 км. А. имеет неравномерную плотности 50 5 ее массы сосредоточены до 5 км, 75 % – до 10 км, 90 % до 16 км.

    Атмосфера состоит из воздуха – механической смеси нескольких газов.

    Список использованных источников



    1. Арустамов Э.А., Волощенко А.Е. Безопасность жизнедеятельности ч. – 1., 2018.

    2. Арустамов Э.А., Волощенко А.Е., Платонов А.П. и др. Организация экологического контроля, надзора и управления в РФ. Лекция, 2018.

    3. Арустамов Э.А., Гуськов Г.В., Платонов А.П. Современный мир и его влияние на окружающую среду. Лекция, 2017.

    4. Багрянцев Г.И., Черников В.Е. Термическое обезвреживание и переработка промышленных и бытовых отходов // Муниципальные и промышленные отходы: способы обезвреживания и вторичной переработки – аналитические обзоры. Новосибирск, 2015.

    5. Безотходная технология. М., Знание, 2018.

    6. Белов С.В. Охрана окружающей среды. Учеб. для студентов. М., 2017.

    7. Бернадинер М.Н., Шурыгин А.П. Огневая переработка и обезвреживание промышленных отходов. М., Химия, 2019.

    8. Гарин А.В. Экология для технических вузов. М., 2018.

    9. Гирусов Э.В. и др. Экология и экономика природопользования. Учеб. для вузов. М., 2018.

    10. Дмитриев В.И., Коршунов Н.Н., Соловьев Н.И. Термическое обезвреживание отходов хлорорганических производств // Химическая технология, 2019, №5

    11. Крапивина С.А. Плазмохимические технологические процессы. Л., Химия, 1989.

    12.http://www.consultant.ru/document/cons_doc_LAW_6072. Закон РФ «Об особо охраняемых природных территориях» Российская газета от 22.03.1995.


    написать администратору сайта