ОТВЕТЫ НА ВОПРОСЫ!. Ответы на вопросы 30-40. Закон Ампера. Вектор магнитной индукции. Магнитное поле
Скачать 344.89 Kb.
|
Теорема о циркуляции вектора магнитной индукции, примеры применения теоремы. Вихревой характер магнитных полей. Теорема о циркуляции утверждает, что циркуляция вектора В магнитного поля постоянных токов по любому контуру L всегда равна произведению магнитной постоянной μ0 на сумму всех токов, пронизывающих контур: Циркуляцией вектора магнитной индукции В по заданному контуру называется интеграл закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора магнитной индукции) где n – число проводников с токами, охватываемых контуром L произвольной формы. Вихревой характер магнитного поля. Линии магнитной индукции непрерывны: они не имеют ни начала, ни конца. Это имеет место для любого магнитного поля, вызванного какими угодно контурами с током. Векторные поля, обладающие непрерывными линиями, получили название вихревых полей. Мы видим, что магнитное поле есть вихревое поле. В этом заключается существенное отличие магнитного поля от электростатического. Магнитное поле соленоида. Пусть соленоид длиной l, во много раз превышающей его диаметр, имеет N витков, по которым течет ток силой I. Если соленоид находится в вакууме (или воздухе), то магнитная индукция поля в нем численно равна B0 = μ0 IN / l = μ0 In,n где n = N/l; In – число ампер-витков, приходящихся на единицу длины соленоида; μ0 – магнитная постоянная, характеризующая магнитное поле в вакууме. Поле внутри длинного соленоида однородно и направлено от южного полюса (S) к северному (N). Модуль магнитной индукции поля в соленоиде пропорционален числу ампервитков, приходящихся на единицу его длины. Магнитная постоянная μ0 = 4π · 10-7 кг · м/(с2 · А2). Магнитный поток. Теорема Гаусса для магнитного поля. Работа по перемещению проводника с током в магнитном поле. Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярна яфизическая величина, равная dФB=BdS=BndS, где Bn=В — угол между векторами — проекция вектора В на направление нормали к площадке dS (cos n и В), dS=dSn — вектор, модуль которого равен dS, а направление совпадает с направлением нормали n (определяется выбором положительного направления нормалик площадке. Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cos n). Обычно поток вектора В связывают с определенным контуром, по которому течет ток. В таком случае положительное направление нормали к контуру нами уже определено: оно связывается с током правилом правого винта. Таким образом, магнитный поток, создаваемый контуром через поверхность, ограниченную им самим, всегда положителен. Поток вектора магнитной индукции ФBчерез произвольную поверхность S равен Для однородного поля и плоской поверхности, расположенной перпендикулярно вектору В, Bn=B=const и ФВ=ВS .Из этой формулы определяется единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, проходящий через плоскую поверхность площадью 1 м2, расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл (1 Вб=1 Тл•м2). Теорема Гаусса для поля В: поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми. Итак, для потоков векторов В и Е сквозь замкнутую поверхность в вихревом и потенциальном полях получаются различные выражения. В качестве примера рассчитаем поток вектора В через соленоид. Магнитная индукция однородного поля внутри соленоида с сердечником с магнитной проницаемостью равна В=0,NI/l. Магнитный поток через один виток соленоида площадью S равен Ф1=ВS, а полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением, Рассмотрим контур с током, образованный неподвижными проводами и скользящей по ним подвижной перемычкой длиной l (рис. 2.17). Этот контур находится во внешнем однородном магнитном поле , перпендикулярном к плоскости контура. При показанном на рисунке направлении тока I, вектор сонаправлен с . Рис. 2.17 На элемент тока I (подвижный провод) длиной l действует сила Ампера, направленная вправо: Пусть проводник l переместится параллельно самому себе на расстояние dx. При этом совершится работа: Итак,
Работа, совершаемая проводником с током при перемещении, численно равна произведению тока на магнитный поток, пересечённый этим проводником. Формула остаётся справедливой, если проводник любой формы движется под любым углом к линиям вектора магнитной индукции. Выведем выражение для работы по перемещению замкнутого контура с током в магнитном поле. Рассмотрим прямоугольный контур с током 1-2-3-4-1 (рис. 2.18). Магнитное поле направлено от нас перпендикулярно плоскости контура. Магнитный поток , пронизывающий контур, направлен по нормали к контуру, поэтому . Рис. 2.18 Переместим этот контур параллельно самому себе в новое положение 1'-2'-3'-4'-1'. Магнитное поле в общем случае может быть неоднородным и новый контур будет пронизан магнитным потоком . Площадка 4-3-2'-1'-4, расположенная между старым и новым контуром, пронизывается потоком . Полная работа по перемещению контура в магнитном поле равна алгебраической сумме работ, совершаемых при перемещении каждой из четырех сторон контура: где , равны нулю, т.к. эти стороны не пересекают магнитного потока, при своём перемещение (очерчивают нулевую площадку). . Провод 1–2 перерезает поток ( ), но движется против сил действия магнитного поля. . Тогда общая работа по перемещению контура или
здесь – это изменение магнитного потока, сцепленного с контуром. Работа, совершаемая при перемещении замкнутого контура с током в магнитном поле, равна произведению величины тока на изменение магнитного потока,сцепленногос этим контуром. Элементарную работу по бесконечно малому перемещению контура в магнитном поле можно найти по формуле
Выражения (2.9.1) и (2.9.5) внешне тождественны, но физический смысл величины dФ различен. Соотношение (2.9.5), выведенное нами для простейшего случая, остаётся справедливым для контура любой формы в произвольном магнитном поле. Более того, если контур неподвижен, а меняется , то при изменении магнитного потока в контуре на величину dФ, магнитное поле совершает ту же работу |