Главная страница

Ответы.Трансфор.ЭМ. Ответы.Трансфор. Закон электромагнитной индукции. Формула. Определение


Скачать 1.32 Mb.
НазваниеЗакон электромагнитной индукции. Формула. Определение
АнкорОтветы.Трансфор.ЭМ.docx
Дата12.05.2017
Размер1.32 Mb.
Формат файлаdocx
Имя файлаОтветы.Трансфор.ЭМ.docx
ТипЗакон
#7468


1. На каком законе физики основан принцип действия трансформатора?

На законе электромагнитной индукции и явлении взаимной индукции.

2. Закон электромагнитной индукции. Формула. Определение.

Электродвижущая сила индукции прямо пропорциональна скорости изменения магнитного потока.

3. Трансформатор – источник энергии или преобразователь?

Трансформатор – преобразователь эл.энергии переменного тока одного напряжения в другое напряжение.

4. Чем отличается стержневой трансформатор от бронестержневого?

Стержневой имеет 2 ярма, бронестержневой – развитой ярмо, которое частично закрывает обмотки.

5. Будет ли работать трансформатор, если стальной сердечник заменить на деревянный?

Будет.

6. Чем отличаются галетные обмотки от концентрических?

Концентрические обмотки выполняются каждая в виде цилиндра и располагаются на стержне концентрически относительно друг друга(первичная внутри вторичной), галетные –также виде цилиндра, располагаются вторичная между первичными.

7. Почему сердечник набирается из стальных листов, а не делается сплошным?

Потому что, чем больше толщина сплошного стального листа, тем больше потери на вихревые токи.

8. Для чего делают транспозицию проводников обмоток?

Для выравнивания полных сопротивлений проводов во избежание неравномерного распределения тока в винтовой обмотке.

9. Какие функции выполняет трансформаторное масло?

1) Охлаждение обмоток и магнитопровода трансформатора.

2) Повышает электрическую прочность изоляции обмоток трансформатора, предотвращает увлажнение изоляции и потерю изоляционных свойств под влиянием атмосферных воздействий.

10. Для чего устанавливают газовое реле в трансформаторах с масляным охлаждением?

Для защиты от аварий (при значительном выделении взрывоопасных газов, возникающих в результате разложения масла, реле автоматически выключает трансформатор, предупреждая развитие аварии). Используется в трансформаторах мощностью более 1000 кВ*А.

11. Для чего служит первичная обмотка в трансформаторах?

Для создания переменного магнитного потока (при подключении к сети в первичной обмотке возникает переменный ток, который создает переменный магнитный поток, который, в свою очередь индуцирует в обеих обмотках переменные ЭДС).

12. Уравнение трансформаторной ЭДС. Формула.



f – частота приложенного напряжения

w - количество витков обмотки

Фm – Амплитуда магнитного потока

13. Коэффициент трансформации. Формула.



ЕВН – ЭДС обмотки высшего напряжения

ЕНН – ЭДС обмотки низшего напряжения

wВН – число витков обмотки высшего напряжения

wНН – число витков обмотки низшего напряжения

14. Поток рассеяния. Определение.

Поток, образованный замыканием магнитных линий по немагнитной среде, не принимающий участия в трансформировании энергии.

(Основной магнитный поток пронизывает витки как первичной, так и вторичной обмоток. Некоторая часть магнитных линий замыкается по немагнитной среде, образуя потоки рассеяния первичной и вторичной обмоток.

Потоки рассеяния первичной и вторичной обмоток обычно очень малы по сравнению с основным магнитным потоком, так как магнитные линии потоков рассеяния замыкаются через воздух (или другой изоляционный материал) и встречают на своем пути очень большое магнитное сопротивление, тогда как основной магнитный поток замыкается по стали магнитопровода и встречает, на своем пути относительно малое магнитное сопротивление).

15. Уравнение первичного напряжения трансформатора. Формула.

Уравнение напряжения первичной обмотки:

http://abc.vvsu.ru/books/r_rukkontr/obj.files/image674.gif,

где U1   – комплекс напряжения на первичной обмотке;

Е1   – комплекс ЭДС первичной обмотки;

I1    – комплекс тока первичной обмотки;

r1    – резистивное сопротивление первичной обмотки;

X1   – индуктивное сопротивление рассеивания первичной обмотки.

16. Уравнение напряжения вторичной обмотки:

http://abc.vvsu.ru/books/r_rukkontr/obj.files/image676.gif,

где U2   – комплекс напряжения на вторичной обмотке;

Е2   – комплекс ЭДС вторичной обмотки;

I2    – комплекс тока вторичной обмотки;

r2    – резистивное сопротивление вторичной обмотки;

X2   – индуктивное сопротивление рассеивания вторичной обмотки.

17. Уравнение токов трансформатора. Формула.

Уравнение токов:

http://abc.vvsu.ru/books/r_rukkontr/obj.files/image678.gif,

где I – ток холостого хода трансформатора.

18. Чем отличается приведенный трансформатор от реального?
Приведенный трансформатор отличается следующим: 1) число витков вторичной обмотки его равно числу витков первичной обмотки реального трансформатора; 2) активные, реактивные и полная мощности, а также потери вторичных обмоток приведенного и реального трансформаторов соответственно равны. 3) коэффициентом трансформации

k=El/E2=wl/w2=1

Так как число витков приведенной вторичной обмотки равно числу витков первичной, то индуктируемые потоком взаимоиндукции электродвижущие силы обеих обмоток равны, т. е.

part6-21.jpg

Необходимо, чтобы приведенная обмотка была эквивалентна действительной вторичной обмотке. Поэтому потери должны сохраниться:

part6-22.jpg

В приведенной обмотке должны сохраниться те же соотношения между активными и индуктивными падениями напряжений, которые существуют в действительной обмотке. Отсюда получим выражение для индуктивного сопротивления приведенной обмотки

part6-23.jpg

19 Угол сдвига фаз между ЭДС и магнитным потоком. Число.

сдвиг фаз между E и Ф м = равен 90°

http://www.transform.ru/articles/html/02theory/books/elt2.files/image039.jpg

20. Что определяет намагничивающий ток?

величина намагничивающего тока и его форма в значительной степени определяются магнитными свойствами магнитопровода трансформатора, которые зависят от величины индукции в стали. При увеличении насыщения магнитопровода намагничивающий ток резко возрастает.

Намагничивающий ток-является главной составляющей тока Х.Х. Этот ток является Реактивным Iр .

21. Угол сдвига фаз между намагничивающим током и магнитным потоком. Число.

 Намагничивающий ток , т.е. реактивная составляющая  Iр, совпадает по фазе с магнитным потоком в сердечнике

сдвиг фаз между  составляющими . активной Iа и Iр равен 90°.

22. Форма намагничивающего тока трансформатора в режиме насыщения. График.







6





5

4

3

2

1





Рис. 2.3. Построение кривой намагничивающего

тока трансформатора

Если магнитопровод трансформатора не насыщен, то намагничивающий ток −синусоидальный, если магнитопровод насыщен, то ток несинусоидальный. Но в любом случае намагничивающий ток совпадает по фазе с магнитным потоком . Внасыщенном трансформаторе ток определяется по кривой намагничивания представленной на рис.2.3 в первом квадранте.

23. Чем определяется активная составляющая тока холостого хода?

Активная составляющая тока холостого хода идет на покрытие потерь мощности

http://edu.dvgups.ru/metdoc/gdtran/depen/elmash/emash/metod/yushenko/image7761.gif (14.4)

Активная составляющая тока холостого хода I = I0cosφ0 зависит от потерь холостого хода http://elmech.mpei.ac.ru/em/em/ch3/3-18-2.files/image004.gif. Практически I0http://elmech.mpei.ac.ru/em/em/ch3/3-18-2.files/image006.gif Ic. Активная составляющая Icа, как указывалось, определяется потерямиhttp://elmech.mpei.ac.ru/em/em/ch3/3-18-2.files/image008.gif.

Таким образом, активная составляющая тока холостого хода

http://elmech.mpei.ac.ru/em/em/ch3/3-16-3.files/image022.gif,         

где http://elmech.mpei.ac.ru/em/em/ch3/3-16-3.files/image024.gif, и ток холостого хода

http://elmech.mpei.ac.ru/em/em/ch3/3-16-3.files/image026.gif.         

24. Чем отличаются постоянные потери в трансформаторе от переменных?

В работающем трансформаторе всегда имеются как магнитные, так и электрические потери. Магнитные потери в трансформаторе слагаются из потерь на вихревые токи и гистерезис:

магнитные потери в трансформаторе

Величина этих потерь зависит от напряжения U1 и магнитной индукции В. Можно считать, что при U1 = const, рон= В2. Они не зависят от нагрузки, то есть являются постоянными.

Электрические потери в обмотках, наоборот, переменные, то есть:электрические потери в трансформаторе

где ркн — соответствует потерям при коротком замыкании трансформатора.

25. Что делают, чтобы уменьшить потери на вихревые токи?

Для уменьшения потерь на вихревые токи

  1. магнитопроводы трансформаторов и других электромагнитных устройств изготавливают не из сплошных масс, а из отдельных пластин, изолированных друг от друга.

  2. магнитопроводы составляют из листов высоколегированной стали, удельное электрическое сопротивление которой значительно больше, чем обычной стали.

Таким образом, потери на вихревые токи зависят от материала магнитопровода, толщины стальных пластин и изоляции между ними. Кроме того, потери на вихревые токи пропорциональны квадратам частоты и магнитной индукции.

26. Что делают, чтобы уменьшить потери на гистерезис?

Потери па перемагничивание (гистерезис) зависят от максимальной индукции в сердечнике:чем больше индукция, тем больше площадь петли гистерезиса и тем больше потери. 

http://dvo.sut.ru/libr/eqp/031/formuli/71.gif где

http://dvo.sut.ru/libr/eqp/031/formuli/72.gif (2)

Чтобы уменьшить потери на гистерезис, Необходимо снизить индукцию Bт, - при этом увеличивая число витков первичной обмотки трансформатора и площадь сечения сердечника

27. От чего зависят потери на гистерезис?

потери на гистерезис зависят

  1. от свойств перемагничиваемого материала магнитопровода.

  2. от частоты перемагничивания

  3. величины наибольшей магнитной индукции

причем они пропорциональны частоте в первой степени и магнитной индукции примерно во второй степени.

Для вычисления этих потерь можно использовать эмпирическую формулу Эг=mn, где — коэффициент, зависящий от свойств материала, m — максимальная индукция, достигаемая в данном цикле, n — показатель степени, принимающий значения от 1,6 до 2 в зависимости от m.

28. Как определить потери в магнитопроводе?

Магнитные потери – это потери мощности в магнитопроводе на гистерезис и на вихревые токи.

http://edu.dvgups.ru/metdoc/gdtran/depen/elmash/emash/metod/yushenko/image7829.gif – потери холостого хода (постоянные потери)

29. Как определить потери в обмотках?

При номинальном режиме в двухобмоточном трансформаторе электрические потери



c:\users\администратор\desktop\1.png

В автотрансформаторе суммарные потери на участках Aа и ах



или



В автотрансформаторе IАа = I1поэтому сечения проводов в первичной обмотке двухобмоточного трансформатора и на участке Ааавтотрансформатора одинаковы, а сопротивление RAa<R1:



На участке ах автотрансформатора проходит ток Iах = I2 (1 —1/k), поэтому сечение провода на этом участке можно выбрать меньшим, чем во вторичной обмотке двухобмоточного трансформатора, и пропорциональным отношению токов, проходящих по участку ахи вторичной обмотке:



Таким образом, из формул (2.76) и (2.77) следует, что



Следовательно, отношение электрических потерь в автотрансформаторе и двухобмоточном трансформаторе



Формула (2.79) показывает, что потери мощности в автотрансформаторе меньше, чем в двухобмоточном трансформаторе.
30. Чем отличается Т- образная схема замещения трансформатора от Г- образной?

Т-образная


Г-образная(упрощенная)


31. В приведенном трансформаторе чему равен коэффициент приведения для Е2 и U2 ?

Приведенный трансформатор- трансформатор, вторичная обмотка которого приведена к первичной (количество витков вторичной = кол-ву витков первичной)



эдс приведенного трансформатора
32. В приведенном трансформаторе чему равен коэффициент приведения для I2?



33. В приведенном трансформаторе чему равен коэффициент приведения дл я R2 и X2?



34. Как определить опытным путем параметры схемы замещения Ro и Xo?

;

;

значения тока холостого хода и суммарной мощности (для фазного трансформатора) принимают соответствующими номинальному напряжению первичной обмотки .

.


35. Как определить опытным путем параметры схемы замещения Ro и Xo?

Полное сопротивление короткого замыкания:

.
Активное сопротивление обмоток короткого замыкания:
.

ток короткого замыкания равен номинальному току первичной обмотки , а значения напряжения и суммарной мощности (для фазного трансформатора) принимают соответствующими этому току.
Индуктивное сопротивление рассеяния короткого замыкания:
.

36. Построить векторную диаграмму идеализированного трансформатора. График.

dsc_0237.jpg

37. Построить векторную диаграмму реального трансформатора. График.

dsc_0238.jpg

38. Напряжение Uкз%. Формула.

dsc_0239.jpg

39. Как по напряжению Uкз%. определить ток короткого замыкания?

dsc_0240.jpg

40. Чем отличается ударный ток КЗ от установившегося тока КЗ?

Ударный ток больше установившегося значения тока короткого замыкания примерно в 1,5—1,8 раза.

41. Внешняя характеристика трансформатора при активно-индуктивной нагрузке. График.

активно-индуктивной нагрузке

dsc_0241.jpg

42. В каких пределах регулируют напряжение в мощных трансформаторах?

В промышленности выпускают трансформаторах с регулированием напряжения под нагрузкой для всех мощностей от 63 до 200 000 кВ*А с пределами регулирования +-(10…16)%

43. Что означает регулирование напряжения ПБВ и РПН?

Переключение ответвлений обмоток w1и w2может осуществляться при отключении трансформатора от первичной и вторичной сетей (переключение без возбуждения ПБВ) или под нагрузкой (регулирование под нагрузкой РПН).

Регулирование ПБВ применяют в масляных и сухих силовых трансформаторах общепромышленного назначения, а также в трансформаторах для вентильных преобразователей. Напряжение регулируют на +5% от Uномступенями по 2,5%, т. е. трансформатор имеет пять ступеней регулирования.

 В трансформаторах небольшой мощности используют три ступени регулирования напряжения (4-5; 0; —5%). В силовых трансформаторах большой мощности обычно напряжение регулируют на стороне ВН. Это позволяет упростить конструкцию переключателя ответвлений, так как токи в обмотке ВН меньше, чем в обмотке НН. Число витков обмотки ВН больше, чем обмотки НН, вследствие чего изменение числа витков на 1,25...2,5% можно осуществлять с большей точностью. В трансформаторах, для вентильных преобразователей, часто напряжение регулируют на стороне НН; при этом переключающую аппаратуру выполняют на большие токи, что сильно усложняет ее конструкцию.

РПН. Большое значение имеет возможность регулирования напряжения трансформаторов без перерыва нагрузки. Потребность в таких трансформаторах быстро возрастает

При использовании этого способа регулирования необходимо:

1) обеспечить переход с одного ответвления на другое без разрыва тока, для чего в некоторый момент времени должны быть включены два соседних ответвления;

2) ограничить ток короткого замыкания (ток к. з.) в части обмотки трансформатора, расположенной между этими ответвлениями при одновременном их включении.

44. Как КПД трансформатора зависит от коэффициента нагрузки?



Построим зависимость КПД от нагрузки. При β = 0 полезная мощность и КПД равны нулю. С увеличением отдаваемой мощности КПД увеличивается, так как уменьшается удельное значение магнитных потерь в стали, имеющих постоянное значение. При некотором значении (βопт кривая КПД достигает максимума, после чего начинает уменьшаться с увеличением нагрузки. Причиной этого является сильное увеличение электрических потерь в обмотках, возрастающих пропорционально квадрату тока.



45. При каком условии КПД трансформатора максимален?

 Максимальное КПД в трансформаторах большой мощности достигает весьма высоких пределов (0,98...0,99).

βопт, при котором КПД имеет максимальное значение, можно определить, взяв первую производную /по формуле и приравняв ее нулю. КПД имеет максимум когда электрические потери в обмотках равны магнитным потерям в стали.

46. Оптимальный коэффициент нагрузки, при котором КПД трансформатора максимален. Формула.



47. Какие схемы соединения обмоток применяются в 3-х фазных трансформаторах?

Трехфазные трансформаторы могут быть соединены по схемам «звезда», «звезда с выведенной нулевой точкой», «треугольник» или «зигзаг с выведенной нулевой точкой».

48. В чем особенность соединения «зигзаг»?



Особенностью схемы "зигзаг" является то, что каждую фазу обмотки разделяют на две равные части (полуфазы), которые располагают на разных стержнях магнитопровода и соединяют между собой последовательно и встречно. ЭДС фазы обмотки, соединенной в "зигзаг", равна геометрической разности ЭДС полуфаз, которые сдвинуты на 120º. Поэтому для достижения равенства фазных ЭДС обмотки, соединенной по схеме "звезда", и обмотки, соединенной по схеме "зигзаг", число витков последней должно быть увеличено в 2/(3)1/2 

1,15 раза. Это является недостатком схемы "зигзаг", так как при таком соединении увеличивается расход обмоточного провода.

49. В каких трансформаторах применяется соединение обмоток «зигзаг»?

Первичная и вторичная обмотки трехфазных трансформаторов могут быть соединены по схемам «звезда», «звезда с выведенной нулевой точкой», «треугольник» или «зигзаг с выведенной нулевой точкой».

Схема соединения зигзаг



Каждая фаза состоит из 2ух одинаковых катушек, размещенных на разных стержнях и соединенных между собой встречно так, чтобы векторы индуцируемых в них ЭДС вычитались.

50. Группа соединения трансформатора. Определение.

Из лекций - ГРУППЫ СОЕДИНЕНИЙ ОБМОТОК ТРАНСФОРМАТОРОВ

Трансформаторы делят на группы в зависимости от сдвига по фазе между линейными напряжениями, измеренными на одноименных зажимах.

Однофазные трансформаторы. В них напряжения первичной и вторичной обмоток могут совпадать по фазе или быть сдвинутыми на 180о



Группы соединений обозначают целыми числами от 0 до 11. Номер группы определяют величиной угла, на который вектор линейного напряжения обмотки НН отстает от вектора линейного напряжения обмотки ВН. Для определения номера группы этот угол следует разделить на 30°.

Для однофазных трансформаторов возможны только две группы соединений: нулевая и шестая.

В зависимости от схемы соединения обмоток (У и Д) и порядка соединения их начал и концов получаются различные углы сдвига фаз между линейными напряжениями.



При соединении обмотки НН по схеме Zн, а обмотки ВН по схеме У фазные напряжения обмотки НН сдвинуты относительно соответствующих фазных напряжений обмотки ВН на угол 330°, т. е. при таком соединении имеем одиннадцатую группу. Это объясняется тем, что между векторами линейных напряжений имеется такой же угол.



Из инета - Определение группы соединения трехфазных трансформаторов

Группа соединения трансформатора характеризует сдвиг по фазе между векторами линейных напряжений первичной и вторичной обмоток. Группу соединения принято выражать числом, полученным от деления на 30 угла (в градусах), на который отстает вектор вторичного напряжения от соответствующего вектора первичного напряжения.

51. Y/∆ - 11. Схема соединения и группа соединения обмоток.

c:\users\юрий\desktop\уд11.jpg

Итак, в этом примере группа соединения обмоток 11. Это обозначается так: Y/Δ —11, что читается: «звезда — треугольник — одиннадцать».

52.Y/∆ - 11. Чему равен угол сдвига фаз между первичными и вторичными линейными напряжениями? Число.

В обозначении Y/∆— 11 первый значок Y показывает, что обмотка высшего напряжения соединена звездой. Второй значок ∆ показывает, что обмотка низшего напряжения соединена треугольником. Числа 11 и 12 показывают угловое смещение векторов линейных напряжений обмоток высшего и низшего напряжений. Оно соответствует углу сдвига в сторону вращения стрелки часов между векторами линейных напряжений первичной и вторичной обмоток, принимая за единицу угла угол в 30°. Так, при угле сдвига в 330° группа соединения будет 330 : 30 = 11.

53. Условия, при которых трансформаторы можно соединять параллельно?

Для включения трансформаторов на параллельную работу (рисунок 1.17) необходимо выполнение следующих условий:

а) равенство коэффициентов трансформации , kI = kI I;
б) равенство напряжений короткого замыкания, uКI = uКI I;
в) равенство групп соединения трансформаторов.
Рекомендуется, чтобы отношение номинальных мощностей трансформаторов, включаемых на параллельную работу, не превышало 3:1.
Включение в сеть трансформаторов следует производить только при согласованном порядке чередования фаз.



Рисунок 1.17 – Схема включения трансформаторов при параллельной работе (а) и схема их замещения (б)

54. Почему нельзя соединять параллельно трансформаторы с большой разницей коэффициентов трансформации?

1. Пусть kI ≠ kI I, а именно kI < kII. Тогда ЭДС вторичной обмотки первого трансформатора в режиме холостого хода Е20I будет больше аналогичной ЭДС второго трансформатора, т. е. Е20II. Под действием разности (Е20I – Е20II) в замкнутом контуре, образованном вторичными обмотками и сетью нагрузки, начинает протекать уравнительный ток IУР2,

IУР2 (Е20 I – Е20 II) / (zК I + zК II), (1.59)

где zК I и zК II – номинальные сопротивления короткого замыкания первого и второго трансформаторов.

Уравнительный ток IУР2 вызывает циркуляцию мощности от одного трансформатора к другому, а, следовательно, неравномерную нагрузку трансформаторов, сопровождающуюся увеличением потерь и нагрева. При этом всегда будет нагружен больше тот трансформатор (нагружен больше как по вторичной, так и по первичной цепи), у которого коэффициент трансформации меньше. Наличие уравнительного тока IУР2 приводит к выравниванию выходных напряжений трансформаторов, т. е. U2 I = U 2 II, несмотря на различие их ЭДС Е20 I и Е20 II.

На практике допускается параллельная работа трансформаторов, имеющих различие в коэффициентах трансформации не более 0,5%, т. е.

Δk% < ±0,5%, (1.60)

где – среднее арифметическое значение коэффициентов трансформации.
55) Почему нельзя соединять параллельно трансформаторы с разными группами соединений?
Одно из условий параллельной работы трансформаторов – совпадение по фазе ЭДС

(вторичных напряжений холостого хода), с тем, чтобы их векторная разность равнялась 0. Для этого параллельно работающие трансформаторы должны принадлежать к одной группе соединений. При невыполнении этого условия между одноименными зажимами вторичных обмоток возникает разность ЭДС .



56) Почему нельзя соединять параллельно трансформаторы с большой разницей напряжений КЗ?




Из условия заменяя комплексные велечины их
модулями, получим:


т.е. токи распределяются между трансформаторами обратно пропорционально сопротивлениям к.з.

Следовательно, для того, чтобы нагрузки распределялись между параллельно включенными трансформаторами прямо пропорционально их номинальным мощностям, они должны иметь одинаковые напряжения к.з.

Практически допускается отклонение напряжения к.з. параллельно работающих трансформаторов не блее чем на 10%.

Если Uк не равны, то перегружается трансформатор с меньшим значением Uк, т.е. с меньшим сопротивлением Zк. В этом случае придется уменьшить общую нагрузку всей группы параллельно работающих трансформаторов, т.е. установленная мощность трансформаторов недоиспользуется.
57) В чем суть метода симметричных составляющих? (в лекциях нет, взял из инета)
Метод симметричных составляющих основан на разложении произвольной несимметричной трехфазной системы ЭДС, напряжений или токов в виде суммы трех симметричных систем — составляющих прямой, обратной и нулевой последовательностей.



Разложение:

Прямую последовательность составляют три вектора А1, В1 и С1, имеющие одинаковый модуль и сдвинутые друг относительно друга на 120о. Вектор А1 опережает вектор В1, а вектор В1 опережает вектор С1.

Обратную последовательность составляют векторы А2, В2 и С2, одинаковой длины и сдвинутые друг относительно друга на 120о. Вектор С2 опережает вектор В2, а вектор В2 опережает вектор А2.

Нулевая последовательность образуется векторами А0, В0 и С0 одинаковыми по модулю и направлению.
Расчет:

Любая несимметричная система может быть представлена суммой трех симметричных. Таким образом:

c:\documents and settings\1\рабочий стол\381eacb695ea7633247ae00afe149a41.png


c:\documents and settings\1\рабочий стол\0456f14902a750a2ce6825e729216bf3.png


Введя оператор a, равный:
можно получить для системы:

c:\documents and settings\1\рабочий стол\7484c702b4c1d29b44d83055ebf37c7f.png


Таким образом получается система из трех уравнений с тремя неизвестными, у которой решение однозначно.
58) Автотрансформатор. Определение.
Автотрансформатором называют такой трансформатор, у которого обмотка низшего напряжения электрически (гальванически) связана с обмоткой высшего напряжения.
59) При каких коэффициентах трансформации выгодно использовать автотрансформатор?




Коэффициент выгодности:

Расчетная мощность автотрансформатора меньше, чем мощность двухобмоточного трансформатора при той же проходной мощности, передаваемой из первичной цепи во вторичную, что позволяет выполнить автотрансформатор с меньшей массой и меньшими габаритными размерами. Отношение этих мощностей определяет коэффициент выгодности.

Чем ближе значение коэффициента трансформации k к 1, тем выгоднее применять автотрансформатор с точки зрения уменьшения массы, габаритных размеров и петерь мощности.
60) Для чего служат измерительные трансформаторы?
Измерительные трансформаторы используют главным образом для подключения электроизмерительных приборов в цепи переменного тока высокого напряжения. При этом электроизмерительные приборы оказываются изолированными от цепей высокого напряжения, что обеспечивает безопасность работы обслуживающего персонала. Позволяют расширять пределы измерения приборов, т.е. измерять большие токи и напряжения с помощью сравнительно несложных приборов, рассчитанных для измерения малых токов и напряжений. В ряде случаев служат для подключения к цепям высокого напряжения обмоток реле, обеспечивающих защиту электрических установок от аварийных режимов.
61) В каком режиме работает трансформатор напряжения?
Т.к. сопротивления обмоток вольтметров и других приборов, подключаемых к трансформатору напряжения, велики, то он практически работает в режиме холостого хода. В этом режиме можно с достаточной степенью точности считать, что




Схема включения измерительного трансформатора напряжения

62. В каком режиме работает трансформатор тока?

Трансформатор тока нормально работает в режиме короткого замыкания и не допускает работы в холостую.Сопротивления обмоток амперметров и других приборов, подключаемых к трансформатору тока, обычно малы. Поэтому он практически работает в режиме короткого замыкания, при котором токи I1 и I'2  во много раз больше тока I0,(ток хх) и с достаточной степенью точности можно считать, что

http://www.muravej.com/images/stories/book/bruskin.files/image370.jpg

63-64 Чем определяется погрешность коэффициента трансформации у измерительных трансформаторов?Чем определяется угловая погрешность у измерительных трансформаторов?

Реальный коэффициент трансформации несколько отличается от номинального. Это отличие характеризуется величиной погрешности преобразования, состоящей из двух составляющих - синфазной и квадратурной. Первая характеризует отклонение по величине, вторая отклонение по фазе вторичного тока реального от номинального.

У трансформатора тока :

В действительности из-за наличия тока холостого хода http://www.muravej.com/images/stories/book/bruskin.files/image371.gif в рассматриваемом трансформаторе http://www.muravej.com/images/stories/book/bruskin.files/image372.gif и между векторами этих токов имеется некоторый угол, отличный от 180° (рис. 3.34, в). Это создает относительную токовую погрешность

http://www.muravej.com/images/stories/book/bruskin.files/image373.jpg

и угловую погрешность, измеряемую углом δi, между векторами http://www.muravej.com/images/stories/book/bruskin.files/image089.gif и http://www.muravej.com/images/stories/book/bruskin.files/image374.gif. Погрешность δiсчитается положительной, если вектор — http://www.muravej.com/images/stories/book/bruskin.files/image374.gif опережает вектор  http://www.muravej.com/images/stories/book/bruskin.files/image089.gif.измерительные трансформаторы

Угловая погрешность составляет 10... 120 угл. мин.

http://www.muravej.com/images/stories/book/bruskin.files/image366.jpg

У трансформатора напряжения :

Так как сопротивления обмоток вольтметров и других приборов, подключаемых к трансформатору напряжения, велики, то он практически работает в режиме холостого хода. В этом режиме можно с достаточной степенью точности считать,  что   Ul = U'2=U2k.http://www.muravej.com/images/stories/book/bruskin.files/image362.jpg

В действительности ток холостого хода I0 (а также небольшой ток нагрузки) создает в трансформаторе падение напряжения, поэтому, как видно из векторной диаграммы (рис. 3.33, б), http://www.muravej.com/images/stories/book/bruskin.files/image363.gifи между векторами этих напряжений имеется некоторый сдвиг по фазе δu. В результате при измерениях образуются некоторые погрешности.

В измерительных трансформаторах напряжения различают два вида погрешностей:

а) относительную погрешность напряжения

http://www.muravej.com/images/stories/book/bruskin.files/image364.jpg

б) угловую погрешность δu; за ее значение принимают угол между векторами http://www.muravej.com/images/stories/book/bruskin.files/image139.gif и — http://www.muravej.com/images/stories/book/bruskin.files/image365.gif. Она влияет на результаты измерений, выполненных с помощью ваттметров, счетчиков, фазометров и прочих приборов, показания которых зависят не только от силы тока и напряжения, но и от угла сдвига фаз между ними. Угловая погрешность считается положительной, если вектор http://www.muravej.com/images/stories/book/bruskin.files/image365.gif опережает вектор http://www.muravej.com/images/stories/book/bruskin.files/image139.gif. Угловая их погрешность составляет 20... 40 угл. мин.

Измерительные трансформаторы используют главным образом для подключения электроизмерительных приборов в цепи переменного тока высокого напряжения.

65 Почему нельзя размыкать вторичную обмотку трансформатора тока?

Следует отметить, что размыкание цепи вторичной обмотки трансформатора тока недопустимо.Трансформатор переходит в режим х.х. и его результирующая МДС, в рабочем режиме равная http://www.muravej.com/images/stories/book/bruskin.files/image375.gif, становится http://www.muravej.com/images/stories/book/bruskin.files/image376.gif(рис. 3.34, в). В результате резко (в десятки и сотни раз) возрастает магнитный поток в магнитопроводе, а индукция в нем достигает значения В>2 Тл, что приводит к сильному возрастанию магнитных потерь в стали; при этом трансформатор может сгореть. Еще большую опасность представляет резкое повышение напряжения на зажимах вторичной обмотки до нескольких сотен и даже тысяч вольт. Для предотвращения режима холостого хода при отключении приборов следует замыкать вторичную обмотку трансформатора тока накоротко.

измерительные трансформаторыhttp://www.muravej.com/images/stories/book/bruskin.files/image366.jpg

66-67 Внешняя характеристика сварочного трансформатора?

Каким образом ограничивают рабочий ток в сварочном трансформаторе?

При работе сварочных трансформаторов короткое замыкание является нормальным эксплуатационным режимом. Поэтому для ограничения тока к. з. и устойчивого горения дуги такой трансформатор должен иметь крутопадающую внешнюю характеристику, а цепь сварочного тока должна обладать значительной индуктивностью. Для этого в сварочных трансформаторах первичную и вторичную обмотки размещают на различных стержнях магнитопровода, вследствие чего сопротивление короткого замыкания Ζκ и напряжения икоказываются у них в несколько раз больше, чем у обычных силовых  трансформаторов.

Обычно в сварочных трансформаторах последовательно со вторичной обмоткой включают реактор Lс переменной индуктивностью (рис. 3.35, а). Регулируя индуктивность реактора (изменяя воздушный зазор в его магнитопроводе), изменяют форму внешней характеристики 1 или 2 трансформатора (рис. 3.35, б) и ток дуги I21 или I22, соответствующий напряжению горения дуги  Uд.http://www.muravej.com/images/stories/book/bruskin.files/image377.jpg

1-трансформатор

2-реактор с переменной индуктивностью

3-электрод

4-свариваемая деталь

68 Где, в основном используются трансформаторные схемы для преобразования числа фаз?

Трансформаторные схемы для преобразования числа фаз. При питании однофазных нагрузок большой мощности от сети трехфазного тока из-за неравномерности нагрузок отдельных фаз возникают значительные искажения симметрии трехфазных напряжений. В этом случае для выравнивания нагрузок фаз применяют специальные схемы включения трансформаторов: трехфазно-двухфазного преобразования (называемую иногда схемой Скотта) и включения двух однофазных трансформаторов (или двух фаз трехфазного трансформатора) в открытый треугольник. Эти схемы используют, в частности, для питания переменным током контактной сети электрифицированного  транспорта.



написать администратору сайта