Геометроия. 25. Математика. Закон соответствия между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины
Скачать 192.56 Kb.
|
Вопрос №25 Понятие функции. Примеры функций. График функции. Функция – это закон соответствия между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x (аргумента или независимой переменной) соответствует только одно определенное значение другой величины y (функции или зависимой переменной). ? - Cвойства функций 1.Четность и нечетность. Функция f(x) называется четной, если ее значения симметричны относительно оси OY, т.е. f(-x) = f(x). Функция f(x) называется нечетной, если ее значение изменяется на противоположное при изменении переменной х на -х , т.е. f(-x) = -f(x). В противном случае функция называется функцией общего вида. 2.Монотонность. Функция называется возрастающей (убывающей) на промежутке Х, если большему значению аргумента из этого промежутка соответствует большее (меньшее) значение функции, т.е. при x1< (>) x2, f(x1) < (>) f(x2). 3.Периодичность. Если значение функции f(x) повторяется через определенный период Т, то функция называется периодической с периодом Т ≠ 0 , т.е. f(x + T) = f(x). В противном случае непериодической. 4. Ограниченность. Функция f (x) называется ограниченной на промежутке Х, если существует такое положительное число М > 0 , что для любого x, принадлежащего промежутку Х, | f (x) | < M. В противном случае функция называется неограниченной. ОСНОВНЫЕ СПОСОБЫ ЗАДАНИЯ ЧИСЛОВЫХ ФУНКЦИЙ: 1) Аналитический способ – задание функции с помощью формулы. С таким способом мы сталкиваемся наиболее часто. Обозначать в общем виде такую формулу принято обычно как у=f(x), где под х понимают аргумент, а под y значение функции. При этом, свободно используются, например, такие равноправные записи: Что может означать указанная формула? Например, соответствие длины стены квадратной комнаты и ее площади. С помощью такой функции можно легко ответить, что такой комнате со стороной 4 метра соответствует одна единственная площадь . 2) Табличный способ – задание функции с помощью таблицы связанных друг с другом значений. Такой способ зачастую используется, если не известно правило соотношения между аргументом и функцией.
3) Графический способ – задание функции с помощью изображения точек в системе координат, когда одной координате точек поставлена в однозначное соответствие другая ее координата. Если привести в пример график все той же функции , то он будет иметь вид не безызвестной вам параболы: Такой способ задания функции очень наглядный и позволяет быстро анализировать различные ее свойства, например, монотонность, четность, периодичность и т.п. О них мы скоро поговорим. ПРИМЕРЫ ФУНКЦИЙ И ИХ ГРАФИКОВ |