Законы сохранения и симметрия. Лебедева Кристина 304гр. Симметрия и асимметрия - две полярные противоположности объективного мира. В реальной природе нет чистых симметрии и асимметрий. Они всегда находятся в единстве и непрерывной борьбе. «Симметрия - понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, т.е. некий элемент гармонии. Асимметрия - понятие, отражающее разупорядочение системы, нарушение равновесия и это связано с изменением, развитием системы» Симметрия, являясь фундаментальным свойством природы, определяет структуру материального мира. Симметрия обладает многоплановым и многоуровневым характером. В системе физических знаний симметрия рассматривается на уровне явлений, законов, которые описывают эти явления, и принципов, которые лежат в основе этих законов. СТРУКТУРА СИММЕТРИИ Понятие симметрии имеет определенную «структуру» состоящую из трех факторов: • объект или явление, симметрия которых рассматривается; • изменение (преобразование), по отношению к которому рассматривается симметрия; • инвариантность (неизменность, сохранение) каких-то свойств объекта, выражающая рассматриваемую симметрию • принцип симметрии Кюри Пространственные (геометрические) симметрии Можно выделить следующие операции симметрии: отражение в плоскости симметрии (отражение в зеркале);поворот вокруг оси (поворотная симметрия);отражение в центре симметрии (инверсия);перенос (трансляция) фигуры на расстоянии; винтовые повороты. СВЯЗЬ МЕЖДУ ЗАКОНАМИ СОХРАНЕНИЯ И СИММЕТРИЕЙ. Закон сохранения энергии есть следствие однородности времени или, иначе говоря, следствие симметрии законов природы по отношению к переносам во времени. Энергия – физическая величина, сохранение которой обусловлено указанной симметрией. Закон сохранения импульса есть следствие однородности пространства (следствие симметрии законов природы по отношению к переносам в пространстве). Импульс – физическая величина, сохранение которой связано с однородностью пространства. Закон сохранения момента импульса есть следствие изотропности пространства (следствие симметрии законов природы по отношению к поворотам) Момент импульса – величина, сохранение которой связано с изотропностью пространства. Связь законов сохранения с симметрией пространства и времени Принципы симметрии тесно связаны с законами сохранения физических величин – утверждениями, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или в определённых классах процессов. Фактически, во многих случаях законы сохранения просто вытекают из принципов симметрии. Связь между симметрией пространства и законами сохранения установила в 1918 году немецкий математик Эмми Нетер (1882 – 1935). Она сформулировала и доказала фундаментальную теорему математической физики, названную ее именем, из которой следует, что если некоторая система инвариантна относительно некоторого глобального преобразования, то для нее существует определенная сохраняющаяся величина Теорема Нетер, доказанная ею во время участия в работе целой группы по проблемам общей теории относительности как бы побочно, стала важнейшим инструментом теоретической физики, утвердившей особую роль принципов симметрии при построении физической теории. Упоминаемые законы сохранения являются следствиями симметрий, существующих в реальном пространстве – времени. Закон сохранения энергии является следствием временной трансляционной симметрии - однородности времени. Теорема Нетер, доказанная ею во время участия в работе целой группы по проблемам общей теории относительности как бы побочно, стала важнейшим инструментом теоретической физики, утвердившей особую роль принципов симметрии при построении физической теории. Упоминаемые законы сохранения являются следствиями симметрий, существующих в реальном пространстве – времени. Закон сохранения энергии является следствием временной трансляционной симметрии - однородности времени. Закон сохранения момента импульса является Следствием симметрии относительно поворотов в пространстве, свидетельствует об изотропности пространства. Эти законы сохранения характерны для всех частиц, являются общими, выполняющимися во всех взаимодействиях. Спасибо за внимание! |