Занятие Профессиональный модуль 02 Проведение наладки контрольноизмерительных приборов и систем автоматики
Скачать 1.18 Mb.
|
Тема 1.2 Безопасность труда Тема занятия: Виды электротравм Цель работы: изучить виды электротравм, причины их возникновения Оборудование: инструкции Основные теоретические положения. Действие электрического тока на живую ткань в отличие от других материальных факторов носит своеобразный и разносторонний характер. Проходя через организм, электрический ток производит термическое, электролитическое и биологическое действия. Термическое действие проявляется в нагреве тканей вплоть до ожогов отдельных участков тела, перегрева, кровеносных сосудов и крови, что вызывает в них серьезные функциональные расстройства. Электролитическое действие вызывает разложение крови и плазмы - значительные нарушения их физико-химических составов и ткани в целом. Биологическое действие выражается в раздражении и возбуждении живых тканей организма, что может сопровождаться непроизвольными судорожными сокращениями мыщц, в том числе мышц сердца и легких. При этом могут возникнуть различные нарушения в организме, включая нарушение и даже полное прекращение деятельности сердца и легких, а также механические повреждения тканей. Любое из этих действий тока может привести к электрической травме, т. е. к повреждению организма, вызванному воздействием электрического тока или электрической дуги. Электротравмы условно можно разделить на два вида: местные электротравмы и электрические удары. Местные электротравмы - это четко выраженные местные нарушения целостности тканей организма, вызванные воздействием электрического тока или электрической дуги. Обычно это поверхностные повреждения, т. е. поражения кожи, а иногда других мягких тканей, а также связок и костей. Опасность местных электротравм и сложность их лечения зависят от характера и степени повреждения тканей, а также реакции организма на это повреждение. Обычно местные электротравмы излечиваются, и работоспособность пострадавшего восстанавливается полностью или частично. Иногда (обычно при тяжелых ожогах) человек погибает. В таких случаях непосредственной причиной смерти является не электрический ток (или дуга), а местное повреждение организма, вызванное током (дугой). Характерные виды местных электротравм - электрические ожоги, электрические знаки, металлизация кожи, электроофтальмия и механические повреждения. Электрический ожог - наиболее распространенная электротравма: ожоги возникают у большей части пострадавших от электрического тока (60 - 65%), причем третья часть их сопровождается другими электротравмами. Ожоги бывают двух видов: токовый (или контактный) и дуговой. Токовый ожог обусловлен прохождением тока непосредственно через тело человека в результате контакта человека с токоведущей частью и является следствием преобразования электрической энергии в тепловую. При этом поскольку кожа человека обладает во много раз большим электрическим сопротивлением, чем другие ткани тела, в ней выделяется большая часть теплоты. Этим и объясняется, что токовый ожог является, как правило, ожогом кожи в месте контакта тела с токоведущей частью. Токовые ожоги возникают в электроустановках относительно небольшого напряжения - не выше 1 - 2 кВ и являются в большинстве случаев ожогами I или II степени, т. е. сравнительно легкими; иногда возникают тяжелые ожоги. При более высоких напряжениях между токоведущей частью и телом человека образуется электрическая дуга, которая и обусловливает возникновение ожога другого вида - дугового. Дуговой ожог обусловлен воздействием на тело электрической дуги, обладающей высокой температурой (свыше 3500 °С) и большой энергией. Этот ожог возникает обычно в электроустановках высокого напряжения — выше 1 кВ и, как правило, носит тяжелый характер — III или IV степени. Электрическая дуга может вызвать обширные ожоги тела, выгорание тканей на большую глубину, обугливание и бесследное сгорание больших участков тела. Электрические знаки, которые называются также знаками тока или электрическими метками, представляют собой четко очерченные пятна серого или бледно-желтого цвета на поверхности кожи человека, подвергнувшейся действию тока. Часто знаки имеют круглую или овальную форму с углублением в центре и размерами 1 - 5 мм. Бывают знаки в виде царапин, небольших ран, порезов или ушибов, бородавок, кровоизлияний в кожу и мозолей. Иногда форма знака соответствует форме токоведущей части, к которой прикоснулся пострадавший, а также может напоминать фигуру молнии. Пораженный участок кожи затвердевает подобно мозоли. В большинстве случаев электрические знаки безболезненны и их лечение заканчивается благополучно: с течением времени верхний слой кожи сходит и пораженное место приобретает первоначальный цвет, эластичность и чувствительность. Знаки возникают довольно часто: примерно у каждого пятого пострадавшего от тока. Металлизация кожи - проникновение в верхние слон кожи мельчайших частичек металла, расплавившегося под действием электрической дуги. Это может произойти при коротких замыканиях, отключениях разъединителей и рубильников под нагрузкой. В месте поражения кожа становится шероховатой и жесткой. В этом месте пострадавший испытывает напряжение кожи от присутствия в ней инородного тела и боль от ожога за счет теплоты занесенного в кожу металла. С течением времени больная кожа сходит, пораженный участок приобретает нормальный вид и болезненные ощущения исчезают. Однако при поражении глаз лечение может оказаться длительным и сложным, а в некоторых случаях пострадавший может лишиться зрения. Металлизация кожи наблюдается примерно у 10% пострадавших от тока. Одновременно с металлизацией кожи иногда происходит ожог электрической дугой, который почти всегда вызывает более тяжелые повреждения. Электроофтальмия - воспаление наружных оболочек глаз, возникающее в результате воздействия мощного потока ультрафиолетовых лучей, которые энергично поглощаются клетками организма и вызывают в них химические изменения. Такое облучение возможно при наличии электрической дуги (возникшей, например, при коротком замыкании), которая является источником интенсивного излучения не только видимого света, но и ультрафиолетовых и инфракрасных лучей. Электроофтальмия развивается спустя 2 - 6 ч после ультрафиолетового облу-чения. При этом происходит покраснение и воспаление слизистых оболочек век, слезотечение, гнойные выделения из глаз, спазмы век и частичное ослепление. Пострадавший испытывает сильную головную боль и резкую боль в глазах, усиливающуюся на свету, т. е. у него возникает так называемая светобоязнь. В тяжелых случаях воспаляется роговая оболочка глаз с нарушением ее прозрачности, расширяются сосуды роговой и слизистой оболочек, суживаются зрачки. Продолжительность болезни обычно несколько дней. В случае поражения роговой оболочки лечение оказывается более сложным и длительным. Электроофтальмия возникает сравнительно редко - у 1 - 2% пострадавших от тока. 1 Механические повреждения возникают в результате резких непроизвольных судорожных сокращений мышц под действием тока, проходящего через человека. В результате могут произойти разрывы кожи, кровеносных сосудов и нервной ткани, а также вывихи суставов и даже переломы костей. Механические повреждения являются, как правило, серьезными травмами, требующими длительного лечения; они происходят очень редко. Механические повреждения, вызванные, например, падением человека с высоты в результате воздействия тока, к электротравмам не относятся. Электрический удар - это возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся судорожными сокращениями мышц. При электрических ударах исход воздействия тока на организм может быть различным - от легкого, едва ощутимого судорожного сокращения мышц пальцев руки до прекращения работы сердца или легких, т. е. до смертельного поражения. В зависимости от исхода воздействия тока на организм электрические удары делятся на следующие четыре степени: I - судорожное сокращение мышц без потери сознания; II - судорожное сокращение мышц с потерей сознания, но с сохранившимися дыханием и работой сердца; III - потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе); IV - клиническая смерть, т. е. отсутствие дыхания и кровообращения. Клиническая (мнимая) смерть - переходный период от жизни к cмерти, наступающий с момента прекращения деятельности сердца и легких. У человека, находящегося в состоянии клинической смерти, отсутствуют все признаки жизни: он не дышит, его сердце не работает, болевые раздражения не вызывают никаких реакций, зрачки глаз расширены и не реагируют на свет. Однако в этот период жизнь в организме еще полностью не угасает, ибо ткани его умирают не все сразу и не сразу прекращаются функции различных органов. При этом почти во всех тканях организма продолжаются обменные процессы, хотя и на очень низком уровне, резко отличающиеся от обычных, но достаточные для поддержания минимальной жизнедеятельности. Эти обстоятельства позволяют, воздействуя на более стойкие жизненные функции организма, восстановить угасающие или только что угасшие функции, т. е. оживить умирающий организм. При клинической смерти первыми начинают погибать очень чувствительные к кислородному голоданию клетки коры головного мозга (нейроны), с деятельностью которых связаны сознание и мышление. Поэтому длительность клинической смерти определяется временем с момента прекращения сердечной деятельности и дыхания до начала гибели клеток коры головного мозга; вбольшинстве случаев она составляет 4 - 5 мин, а при гибели здорового человека от случайной причины, например от электрического тока, - 7 - 8 мин. Если смерть наступила в результате тяжелой болезни, т. е. когда организм исчерпал значительную часть своих жизненных сил, клиническая смерть может длиться всего несколько секунд. Биологическая (истинная) смерть - необратимое явление, характеризующееся прекращением биологических процессов в клетках и тканях организма и распадом белковых структур; она наступает по истечении периода клинической смерти. Причинами смерти от электрического тока могут быть: прекращение работы сердца, прекращение дыхания и электрический шок. Прекращение работы сердца - результат прямого воздействия тока на мышцу сердца, т. е. прохождение тока непосредственно в области сердца, а иногда и результатом рефлекторного действия, когда сердце не лежит на пути тока. В обоих случаях может произойти остановка сердца или наступить его фибрилляция. Фибрилляция - это хаотические быстрые и разновременные сокращения волокон сердечной мышцы (фибрилл), при которых сердце перестает работать как насос, т. е. оно не в состоянии обеспечить движение крови по сосудам. В результате остановки или фибрилляции сердца в организме прекращается кровообращение, а следовательно, прекращается доставка кислорода кровью из легких к тканям и органам, что и вызывает гибель организма. Прекращение дыхания вызывается прямым, а иногда рефлекторным воздействием тока на мышцы грудной клетки, участвующие в процессе дыхания. Человек начинает испытывать затруднение дыхания уже при токе, равном 20 - 25 мА (50 Гц), которое усиливается с ростом тока. При длительном действии такого тока (несколько минут) наступает так называемая асфиксия (удушье) в результате недостатка кислорода и избытка углекислоты в организме. Прекращение дыхания возможно и в результате кратковременного (несколько секунд) воздействия большого тока (несколько сотен миллиампер и более), который может вызвать паралич дыхания. Электрический шок - своеобразная тяжелая нервнорефлекторная реакция организма в ответ на сильное раздражение электрическим током, сопровождающаяся опасными расстройствами кровообращения, дыхания, обмена веществ. Шоковое состояние длится от нескольких десятков минут до суток. После этого может наступить или гибель организма в результате полного угасания жизненно важных функций, или полное выздоровление как результат своевременного активного лечебного вмешательства. Порядок выполнения работы Задание №1 Повторить теоретический материал. Задание №2 Заполнить таблицу Виды электротравм
Практическое занятие № Профессиональный модуль 02 Проведение наладки контрольно-измерительных приборов и систем автоматики Раздел 1 . Выполнение наладки электрических схем (по стандартной методике) различных систем автоматики. Тема 1.2 Безопасность труда Тема занятия: Защитное заземление Цель работы: изучить виды защитного заземления Оборудование: инструкции Основные теоретические положения. Защитное заземление - это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Цель защитного заземления - снизить до безопасной величины напряжение относительно земли на металлических частях оборудования, которые не находятся под напряжением, но могут оказаться под напряжением вследствие нарушения изоляции электроустановок. В результате замыкания на корпус заземленного оборудования снижается напряжение прикосновения и, как следствие,- ток, проходящий через тело человека, при его прикосновении к корпусам. Применяется также заземление электрооборудования, зданий и сооружений для защиты от действия атмосферного электричества. Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1000 В с изолированной нейтралью, а в сетях напряжением 1000 В и выше - с любым режимом нейтрали. Заземляющее устройство - это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. Различают естественные и искусственные заземлители. Для заземляющих устройств в первую очередь должны быть использованы естественные зазем-лители: - водопроводные трубы, проложенные в земле; - металлические конструкции зданий и сооружений, имеющие надежное соединение с землей; - металлические оболочки кабелей (кроме алюминиевых); - обсадные трубы артезианских скважин. Запрещается в качестве заземлителей использовать трубопроводы с горючими жидкостями и газами, трубы теплотрасс. Естественные заземлители должны иметь присоединение к заземляющей сети не менее чем в двух разных местах. В качестве искусственных заземлителей применяют: - стальные трубы диаметром 3-5 см, толщиной стенок 3,5 мм, длиной 2-3 м; - полосовую сталь толщиной не менее 4 мм; - угловую сталь толщиной не менее 4 мм; - прутковую сталь диаметром не менее 10 мм, длиной до 10 м и более. Для искусственных заземлителей в агрессивных почвах (щелочных, кислых), где они подвергаются усиленной коррозии, применяют медь, омедненный или оцинкованный металл. В качестве искусственных заземлителей нельзя применять алюминиевые оболочки кабелей, а также голые алюминиевые проводники, так как в почве они окисляются, а окись алюминия - это изолятор. Каждый отдельный проводник, находящийся в контакте с землей, называетсяоди-ночным заземлителем, или электродом. Если заземлитель состоит из нескольких электродов, соединенных между собой параллельно, он называетсягрупповым заземлителем. Для погружения в землю вертикальных электродов предварительно роют траншею глубиной 0,7-0,8 м, после чего забивают трубы или уголки с помощью механизмов. Стальные стержни диаметром 10-12 мм заглубляют в землю с помощью специального приспособления, а более длинные - с помощью вибратора. Верхние концы погруженных в землю вертикальных электродов соединяют стальной полосой методом сварки. Устройство защитного заземления может быть осуществлено двумя способами:- контурным расположением заземляющих проводников ивыносным. При контурном размещении заземлителей обеспечивается выравнивание потенциалов при однофазном замыкании на землю. Кроме того, благодаря взаимному влиянию заземлителей уменьшается напряжение прикосновения и напряжение шага в защищаемой зоне. Выносные заземления этими свойствами не обладают. Зато при выносном способе размещения есть выбор места для заглубления заземлителей. В помещениях заземляющие проводники следует располагать таким образом, чтобы они были доступны для осмотра и надежно защищены от механических повреждений. На полу помещений заземляющие проводники укладывают в специальные канавки. В помещениях, где возможно выделение едких паров и газов, а также с повышенной влажностью заземляющие проводники прокладывают вдоль стен на скобах в 10 мм от стены. Каждый корпус электроустановки должен быть присоединен к заземлителю или к заземляющей магистрали с помощью отдельного ответвления. Последовательное включение нескольких заземляемых корпусов электроустановок в заземляющий проводник запрещается. Сопротивление заземляющего устройства представляет собой сумму сопротивлений заземлителя относительно земли и заземляющих проводников. Сопротивление заземлителя относительно земли есть отношение напряжения на заземлителе к току, проходящему через заземлитель в землю. Величина сопротивления заземлителя зависит от удельного сопротивления грунта, в котором заземлитель находится; типа размеров и расположения элементов, из которых заземлитель выполнен; количества и взаимного расположения электродов. Величина сопротивления заземлителей может изменяться в несколько раз в зависимости от времени года. Наибольшее сопротивление заземлители имеют зимой при промерзании грунта и в засушливое время. Наибольшее допустимое значение сопротивления заземления в установках до 1000 В: 10 Ом - при суммарной мощности генераторов и трансформаторов 100 кВА и менее, 4 Ом - во всех остальных случаях. Указанные нормы обосновываются допустимой величиной напряжения прикосновения, которая в сетях до 1000 В не должна превышать 40 В. В установках свыше 1000 В допускается сопротивление заземления R3 <= 125/I3 Ом, но не более 4 Ом или 10 Ом. В установках свыше 1000 В с большими токами замыкания на землю сопротивление заземляющего устройства не должно быть более 0,5 Ом для обеспечения автоматического отключения участка сети в случае аварии. Порядок выполнения работы Задание № 1 Повторить теоретический материал Задание № 2 Ответить на контрольные вопросы Контрольные вопросы 1. Что называется защитным заземлением? 2. Какова цель защитного заземления? 3. В каких сетях применяется защитное заземление? 4. Как различают заземлители? 5. Что такое заземляющее устройство? 6. Что называется электродом? Групповым заземлителем? 7. Какими способами выполняют устройство защитного заземления? Задание № 3 Заполнить таблицы Таблица 1
Таблица 2
Практическое занятие № Профессиональный модуль 02 Проведение наладки контрольно-измерительных приборов и систем автоматики Раздел 1 . Выполнение наладки электрических схем (по стандартной методике) различных систем автоматики. |