Главная страница
Навигация по странице:

  • ИА = ОП 1 х 100/ОП 2

  • Ответ: Иммуноглобули́ны G

  • Гиперчувствительность немедленного типа

  • Основные типы реакций гиперчувствительности

  • Клинические проявления гиперчувствительности I типа.

  • Клинические проявления III типа

  • Ответ: ГЗТ (4) — иммунное воспаление — механизм, защитное и повреждающее действие. Примеры К аллергическим реак­циям

  • В отличие от реакций I, II и III типов

  • Механизм аллергической реакции

  • Ответы на коллоквиум по микробиологии. Ответы на микробу 2 коллок. Занятие инфекция, иммунитет, аллергия


    Скачать 0.51 Mb.
    НазваниеЗанятие инфекция, иммунитет, аллергия
    АнкорОтветы на коллоквиум по микробиологии
    Дата08.02.2022
    Размер0.51 Mb.
    Формат файлаdoc
    Имя файлаОтветы на микробу 2 коллок.doc
    ТипЗанятие
    #355156
    страница4 из 5
    1   2   3   4   5

    Ответ: Авидность (лат. - avidity) характеристика прочности связи специфических антител с соответствующими антигенами.

    Индекс авидности (ИА) антител испытуемых сывороток рассчитывают (в %) по формуле:

        ИА = ОП1 х 100/ОП2

    где:
    ОП1 — ОП в лунках с антигенами после обработки раствором, удаляющим низкоавидные IgG;
    ОП2 — ОП в лунках с той же сывороткой, не обработанных раствором.

    Выявление в испытуемой сыворотке антител с индексом авидности ниже 30-35% (у разных производителей) указывает на свежую первичную инфекцию обследованного пациента. Выявленный показатель авидности, равный или превышающий 40%, указывает на то, что в сыворотке содержатся анамнестические высоко-авидные антитела, свидетельствующие об инфекции в прошлом. Показатель авидности антител в интервале 31-39% может свидетельствовать о поздней стадии первичной инфекции или недавно перенесенной инфекции только при условии выявления антител в высокой концентрации.

    Таким образом, определение авидности антител к данному возбудителю позволяет выделить первичную инфекцию, дифференцировать ее от периода реактивации или вторичного проникновения антигена в организм. Но данный тест рекомендуется применять для пациентов, в сыворотке крови которых обнаружены IgM.


    1. Ig G: структура, физико-химические особенности, функции.

    Ответ: Иммуноглобули́ны G (IgG) — класс антител. IgG составляют около 75 % антител плазмы крови у человека и являются наиболее часто встречаемыми в кровотоке антителами. IgG продуцируются плазматическими B-клетками, и каждая молекула IgG имеет два сайта связывания антигена.

    Структура.

    Антитела IgG — крупные молекулы массой около 150 кДа[2][3], состоящие из четырёх полипептидных цепей. Одна молекула IgG содержит две идентичные тяжёлые цепи типа γ массой около 50 кДа и две лёгкие цепи массой около 25 кДа. Две тяжёлые цепи связаны друг с другом и с лёгкими цепями посредством дисульфидных связей. Получающийся тетрамер состоит из двух идентичных половин, которые вместе формируют Y-образную структуру. На каждом конце «вилки» находится по одному сайту связывания с антигеном, которые имеют вариабельную структуру. «Ствол» Y-образной структуры константен, обозначается Fc и содержит высококонсервативные сайты N-гликозилирования. Присоединённые к Fc N-гликаны обогащены фукозой и образуют сложные структуры. Некоторые из этих гликанов также содержат N-ацетилглюкозамин и α-2,6-связанные остатки сиаловой кислоты.

    Функция.

    Антитела составляют главную часть гуморального иммунитета. IgG — главный тип антител крови и межклеточной жидкости, поэтому принимает участие в контроле инфекции по всему телу, связываясь с самыми разными патогенами: вирусами, бактериями, грибками. Связывание IgG с патогенами вызывает их иммобилизацию и связывание друг с другом (агглютинацию). Покрывание поверхности патогена молекулами IgG (опсонизация) позволяет распознать, поглотить и уничтожить его фагоцитам. Кроме того, IgG активирует классический путь системы комплемента[en], который приводит к образованию белков, уничтожающих патоген. Молекулы IgG также способны к связыванию и нейтрализации[en] токсинов. Этот вид антител играет важную роль в зависимой от антител клеточной цитотоксичности[en] (англ. antibody-dependent cellular cytotoxicity, ADCC) и внутриклеточный опосредованный антителами протеолиз[en] за счёт связывания с TRIM21[en] (рецептор клеток человека, обладающий максимальной афинностью к IgG). В результате этих процессов вирионы направляются на разрушение в протеасомах цитозоля[5]. IgG также связаны с реакциями гиперчувствительности II и III типов. IgG образуются за счёт переключения классов антител[en], поэтому они участвуют преимущественно во вторичном иммунном ответе[6]. IgG секретируется в виде мономеров, которые легко проникают в ткани. IgG — единственный вид антител, способный к проникновению через плаценту при помощи специальных рецепторов, обеспечивая защиту плода in utero. Наряду с IgA[en], которые входят в состав грудного молока, остатки IgG, проникнувшие в плод через плаценту, обеспечивают гуморальный иммунитет младенца, пока его собственная иммунная система не начала работать. Высокий процент IgG содержится в молозиве, особенно коровьем. В течение первых шести месяцев младенец имеет, по сути, иммунитет матери и имеет защиту против тех патогенов, с которыми она сталкивалась, пока полученные от матери антитела не разрушаются. IgG участвуют в развитии аллергических реакций и могут предотвращать анафилактические реакции, опосредованные IgE[en]*, взаимодействуя с антигенами раньше, чем это сделают IgE, связанные с тучными клетками. Таким образом, IgG блокируют системную анафилаксию, вызванную проникновением в организм небольшого количества антигена, вместе с тем участвуя в анафилактических реакциях, спровоцированных большим количеством антигена[7].


    1. Ig M: структура, физико-химические особенности, функции.

    Ответ: Иммуноглобули́ны M (IgM) — класс антител. Молекулы IgM являются самыми тяжёлыми (молекулярная масса 990 кДа[1]) и наиболее сложно организованными иммуноглобулинами. Молекула свободного IgM представляет собой пентамер[en], каждый мономер которого состоит из двух тяжёлых цепей (μ-цепей) и двух лёгких цепей κ- или λ-типов. Мономеры объединены в пентамер посредством дисульфидных мостиков и J-цепи[en][2]. При первичном попадании в организм антигена иммуноглобулины IgM из всех антител образуются первыми[3][4]. Кроме того, они первыми появляются в онто- и филогенезе. У человека и других млекопитающих IgM синтезируются плазматическими клетками, находящимися в селезёнке[5][6]. IgM наиболее активны в антибактериальном иммунитете и при ряде аутоиммунных заболеваний[7].
    Структура

    Молекула IgM состоит из пяти мономерных субъединиц, располагающихся радиально, причём их Fc-фрагменты направлены в центр комплекса, а Fab-фрагменты обращены наружу. В каждом мономере тяжёлая цепь (μ-цепь) включает около 576 аминокислотных остатков (а. о.). Она содержит вариабельный домен (VH-домен) длиной около 110 а. о. и четыре константных домена (C-домена), обозначаемых Cμ1, Cμ2, Cμ3 и Cμ4 соответственно, однако в ней отсутствует шарнирный участок. Функционально его частично заменяет домен Cμ2, содержащий в первичной структуре остатки пролина. Существует предположение, что этот домен стал эволюционным предшественником шарнирной области γ- и α-цепей иммуноглобулинов G и A соответственно. Каждый C-домен состоит примерно из 110 а. о. и имеет хвостовой участок длиной около 20 а. о. По данным рентгеноструктурного анализа, остатки пролина в домене Cμ2 обеспечивают Fab-фрагменту гибкость, необходимую для обнаружения антигенных детерминант на поверхности антигенпрезентирующей или бактериальной клетки. Каждая μ-цепь связана с пятью олигосахаридами, присоединёнными к остаткам аспарагина: один «пришит» к домену Cμ1, три — к домену Cμ3 и один — к хвостовой части цепи[11]. Лёгкие цепи представлены λ- или κ-типом, содержат около 220 а. о. и включают вариабельный домен VL (около 110 а. о.) и константный домен CL (около 110 а. о.)[12].
    Мономеры соединяются в пентамер посредством дисульфидных мостиков и J-цепи, с которой у каждого пентамера взаимодействует остаток цистеина, локализованный в C-концевом участке мономера. J-цепь представляет собой небольшой кислый белок длиной около 137 а. о. J-цепь связывает две μ-цепь посредством дисульфидных связей. Однако IgM существует не только в пентамерной форме. Известна мономерная форма IgM, которая находится на поверхности B-лимфоцитов и выполняет роль антигенраспознающего рецептора, а свободный IgM, входящий в состав плазмы крови, существует в виде пентамера. Мембранные мономеры отличаются от мономеров, входящих в состав пентамера, числом аминокислотных остатков в хвостовой части аминокислотной цепи[13][14].
    Хотя у человека и мыши преобладающей формой IgM является пентамер, у шпорцевых лягушек (Xenopus sp.) IgM существует преимущественно в гексамерной форме[15][16], у костистых рыб — в тетрамерной[en] форме. Пентамерная форма IgM преобладает и у хрящевых рыб (например, акул)[17][18]. Причина, по которой IgM человека и мыши существует в основном виде пентамера, неясна, так как теоретически он может формировать и стабильный гексамер[19][20]. Эксперименты на мышах показали, что у них может образовываться гексамерная форма IgM только в случае невозможности взаимодействия μ-цепей с J-цепью (если она не экспрессируется[21] или в μ-цепях отсутствуют остатки цистеина, необходимые для связывания с J-цепью[22][23]). Таким образом, у мыши гексамеры никогда не образуются при наличии J-цепей, а пентамерная форма может существовать как при наличии J-цепи, так и в её отсутствие[24].
    С помощью разнообразных методов, таких как рентгеноструктурный анализ и ЯМР-спектроскопия, была установлена структура доменов Cμ1—Cμ4, которые экспрессировали по отдельности в клетках кишечной палочки Escherichia coli. Как и в случае остальных иммуноглобулинов, μ-цепь IgM содержит 7 перекрывающихся бета-листов, стабилизированных междоменными дисульфидными связями. Константный участок IgM по форме похож на шляпочный гриб, в котором домены Cμ2—Cμ3 образуют «шляпку», а домен Cμ4 формирует подобие «ножки»[25].

    Функции

    IgM — первые иммуноглобулины, которые начинают синтезироваться в плоде человека (примерно на 20-й неделе)[26]. Иммуноглобулины M могут взаимодействовать с компонентом C1[en] системы комплемента и активизировать классический путь системы комплемента, в результате чего происходит опсонизация антигенов и цитолиз. IgM взаимодействуют с молекулами полииммуноглобулинового рецептора[en] (plgR), благодаря чему попадают на слизистые оболочки, такие как выстилку кишечника, а также в грудное молоко. В этом взаимодействии участвует J-цепь[27]. При трансплантации органов в организме реципиента вырабатываются IgM, направленные против пересаженного органа, однако они не участвуют в реакции отторжения трансплантанта и могут оказывать защитную роль[28]. При первичном столкновении с антигеном IgM образуются первыми, они появляются и при повторных столкновениях, но в меньших количествах. IgM не проходят через плаценту (через неё проходят только иммуноглобулины G). Наличие в плазме крови IgM против определённых возбудителей свидетельствует о ранних этапах инфекции, а в крови новорождённого — о внутриматочной инфекции (например, синдроме врождённой краснухи[en]). В норме IgM часто присутствуют с плазме крови в связанном с определёнными антигенами виде, за что их иногда называют «натуральными антителами». Причиной этого явления может служить высокая авидность IgM, из-за чего они связывают антигены с низкой кросс-реактивностью[en], встречающиеся в плазме крови здорового человека[


    1. Аллергическая реакция гуморального (немедленного) типа – тип I. Механизм развития, клиническая значимость.

    Ответ: Аллергия (греч. «allos» – другой, иной, «ergon» – действие) – это типовой иммунопатологический процесс, возникающий на фоне воздействия антигена-аллергена на организм с качественно измененной иммунологической реактивностью и сопровождающийся развитием гиперергических реакций и повреждением тканей. Гиперчувствительность немедленного типа (ГНТ) — ги­перчувствительность, обусловленная антителами (IgE, IgG, IgM) против аллергенов. Развивается через не­сколько минут или часов после воздействия аллергена: рас­ширяются сосуды, повышается их проницаемость, развивают­ся зуд, бронхоспазм, сыпь, отеки. Поздняя фаза ГНТ дополня­ется действием продуктов эозинофилов и нейтрофилов.

    К ГНТ относятся I, II и III типы аллергических реакций (по Джеллу и Кумбсу): I тип — анафилактический, обусловлен­ный главным образом действием IgE; II тип — цитотоксический, обусловленный действием IgG, IgM; III тип — иммунокомплексный, развивающийся при образовании иммунного комплекса IgG, IgM с антигенами. В отдельный тип выделяют антирецепторные реакции.

    Основные типы реакций гиперчувствительности

    I тип — анафилактический. При первичном контакте с ан­тигеном образуются IgE, которые прикрепляются Fc-фрагментом к тучным клеткам и базофилам. Повторно вве­денный антиген перекрестно связывается с IgE на клетках, вызывая их дегрануляцию, выброс гистамина и других медиа­торов аллергии.

    Первичное поступление аллергена вызывает продук­цию плазмоцитами IgE, IgG4. Синтезированные IgE прикрепляются Fc-фрагментом к Fc-pe цепторам (FceRl) базофилов в крови и тучных клеток в слизистых оболочках, соединительной ткани. При повторном поступ­лении аллергена на тучных клетках и базофилах образуюто комплексы IgE с аллергеном (перекрестная сшивка FceRl анти­геном), вызывающие дегрануляцию клеток.

    Клинические проявления гиперчувствительности I типа.

    Клинические проявления гиперчувствительности I типа могут протекать на фоне атопии. Атопия — наследственная предрасположенность к развитию ГНТ, обусловленная повы­шенной выработкой IgE-антител к аллергену, повышенным количеством Fc-рецепторов для этих антител на тучных клет­ках, особенностями распределения тучных клеток и повы­шенной проницаемостью тканевых барьеров.

    Анафилактический шок протекает остро с развитием коллапса, отеков, спазма гладкой мускулатуры; часто заканчи­вается смертью. Крапивница — увеличивается проницае­мость сосудов, кожа краснеет, появляются пузыри, зуд. Бронхиальная астма — развиваются воспаление, бронхо-спазм, усиливается секреция слизи в бронхах.


    1. Аллергические реакции гуморального (немедленного) типа: тип III. Механизм возникновения, клиническая значимость.

    Ответ: III тип — иммунокомплексный. Антитела классов IgG, IgM образуют с растворимыми антигенами иммунные комплексы, которые активируют комплемент. При избытке антигенов или недостатке комплемента иммунные комплексы откладывают­ся на стенке сосудов, базальных мембранах, т. е. структурах, имеющих Fc-рецепторы.

    Первичными компонентами III типа гиперчувствительности являются растворимые иммунные комплексы антиген-анти­тело и комплемент (анафилатоксины С4а, СЗа, С5а). При из­бытке антигенов или недостатке комплемента иммунные комплексы откладываются на стенке сосудов, базальных мем­бранах, т.е. структурах, имеющих Fc-рецепторы. Поврежде­ния обусловлены тромбоцитами, нейтрофилами, иммунными комплексами, комплементом. Привлекаются провоспалительные цитокины, включая TNF-a и хемокины. На поздних стади­ях в процесс вовлекаются макрофаги.

    Реакция может быть общей (например, сывороточная бо­лезнь) или вовлекать отдельные органы, ткани, включая ко­жу (например, системная эритематозная волчанка, реакция Артюса), почки (например, волчаночный нефрит), легкие (например, аспергиллез) или другие органы. Эта реакция может быть обусловлена многими микроорганизмами. Она развивается через 3-10 часов после экспозиции антигена, как в реакции Артюса. Антиген может быть экзогенный (хро­нические бактериальные, вирусные, грибковые или прото-зойные инфекции) или эндогенный, как при системной эри-тематозной волчанке.

    Клинические проявления III типаСывороточная болезнь происходит при введении высоких доз антигена, например лошадиной противостолбнячной сы­воротки. Через 6-7 дней в крови появляются антитела про­тив лошадиного белка, которые, взаимодействуя с данным антигеном, образуют иммунные комплексы, откладывающие­ся в стенках кровеносных сосудов и тканях. Развиваются си­стемные васкулиты, артриты (отложение комплексов в суста­вах), нефрит (отложение комплексов в почках).

    Реакция Артюса развивается при повторном внутрикожном введении антигена, который локально образует иммун­ные комплексы с ранее накопившимися антителами. Прояв­ляется отеком, геморрагическим воспалением и некрозом.


    1. Аллергические реакции клеточного (замедленного) типа (тип IV). Механизм развития, роль в патогенезе и иммунитете инфекционных заболеваний. Кожно-аллергические пробы, их диагностическое значение.

    Ответ: ГЗТ (4) — иммунное воспаление — механизм, защитное и повреждающее действие. Примеры

    К аллергическим реак­циям относят два типа реагирования на чужеродное вещество: гиперчувствительность немедленного типа (ГНТ) и гиперчувствительность замедленного типа (ГЗТ). К ГНТ относятся аллергические реакции, проявляющиеся уже че­рез 20—30 мин после повторной встречи с антигеном, а к ГЗТ — реакции, возникающие не ранее чем через 24—48 ч. Механизм и кли­нические проявления ГНТ и ГЗТ различны. ГНТ связана с вы­работкой антител, а ГЗТ — с клеточными реакциями.

    ГЗТ впервые описана Р. Кохом (1890). Эта форма проявления не связана с антителами, опосредована клеточными механизма­ми с участием Т-лимфоцитов. К ГЗТ относятся следующие фор­мы проявления: туберкулиновая реакция, замедленная аллергия к белкам, контактная аллергия.

    В отличие от реакций I, II и III типов реакции IV типа не свя­заны с антителами, а обусловлены клеточными реакциями, прежде всего Т-лимфоцитами. Реакции замедленного типа могут возникать при сенсибилизации организма:

    1. Микроорганизмами и микробными антигенами (бактериальны­ми, грибковыми, протозойными, вирусными); 2. Гельминтами; 3. Природными и искусственно синтезированными гаптенами (лекарственные препараты, красители); 4. Некоторыми белками.

    Следовательно, реакция замедленного типа может вызывать­ся практически всеми антигенами. Но наиболее ярко она про­является на введение полисахаридов, низкомолекулярных пеп­тидов, т. е. малоиммуногенных антигенов. При этом реакцию вызывают малые дозы антигенов и лучше всего при внутрикожном введении.

    Механизм аллергической реакции этого типа состоит в сен­сибилизации Т-лимфоцитов-хелперов антигеном. Сенсибилизация лимфоцитов вызывает выделение медиаторов, в частности интерлейкина-2, которые активируют макрофаги и тем самым вов­лекают их в процесс разрушения антигена, вызвавшего сенсибилизацию лимфоцитов. Цитотоксичность проявляют также и сами Т-лимфоциты. О роли лимфоцитов в возникновении аллер­гий клеточного типа свидетельствуют возможность передачи ал­лергии от сенсибилизированного животного несенсибилизированному с помощью введения лимфоцитов, а также подавление реакции при помощи антилимфоцитарной сыворотки.
    1   2   3   4   5


    написать администратору сайта