Главная страница

1. Что такое светодиод 5 Достоинства и недостатки 5


Скачать 43.47 Kb.
Название1. Что такое светодиод 5 Достоинства и недостатки 5
Дата20.10.2022
Размер43.47 Kb.
Формат файлаdocx
Имя файлаFotodiot.docx
ТипДокументы
#744761


Содержание


1. Что такое светодиод? 5

2. Достоинства и недостатки 5

Список литературы 11



Понятие и устройство фотодиода
Фотодиод, полупроводниковый диод, обладающий свойством односторонней фотопроводимости при воздействии на него оптического излучения. Ф. представляет собой полупроводниковый кристалл обычно с электронно-дырочным переходом (р–n-переходом), снабженный 2 металлическими выводами (один от р-, другой от n-области) и вмонтированный в металлический или пластмассовый защитный корпус. Материалами, из которых выполняют Ф., служат Ge, Si, GaAs, HgCdTe и др.

Различают 2 режима работы Ф.: фотодиодный, когда во внешней цепи Ф. содержится источник постоянного тока, создающий на р–n-переходе обратное смещение, и вентильный, когда такой источник отсутствует. В фотодиодном режиме Ф., как и фоторезистор, используют для управления электрическим током в цепи Ф. в соответствии с изменением интенсивности падающего излучения. Возникающие под действием излучения неосновные носители диффундируют через р–n-переход и ослабляют электрическое поле последнего. Фототок в Ф. в широких пределах линейно зависит от интенсивности падающего излучения и практически не зависит от напряжения смещения. В вентильном режиме Ф., как и полупроводниковый фотоэлемент, используют в качестве генератора фотоэдс.

Основные параметры Ф.: 1) порог чувствительности (величина минимального сигнала, регистрируемого Ф., отнесённая к единице полосы рабочих частот), достигает 10-14 вт/гц1/2; 2) уровень шумов – не свыше 10-9 а; 3) область спектральной чувствительности лежит в пределах 0,3–15 мкм; 4) спектральная чувствительность (отношение фототока к потоку падающего монохроматического излучения с известной длиной волны) составляет 0,5–1 а/вт; 5) инерционность (время установления фототока) порядка 10-7–10-8 сек. В лавинном Ф., представляющем собой разновидность Ф. с р–n-cтруктурой, для увеличения чувствительности используют т. н. лавинное умножение тока в р–n-переходе, основанное на ударной ионизации атомов в области перехода фотоэлектронами. При этом коэффициент лавинного умножения составляет 102–104. Существуют также Ф. с р–i–n-cтруктурой, близкие по своим характеристикам к Ф. с р–n-cтруктурой; по сравнению с последними они обладают значительно меньшей инерционностью (до 10-10 сек).

Ф. находят применение в устройствах автоматики, лазерной техники, вычислительной техники, измерительной техники и т.п.
2. Принцип действия фотодиода
При поглощении квантов света в p-n переходе или в прилегающих к нему областях образуются новые носители заряда. Неосновные носители заряда, возникшие в областях, прилегающих к p-n переходу на расстоянии, не превышающей диффузионной длины, диффундируют в p-n переход и проходят через него под действием электрического поля. То есть обратный ток при освещении возрастает. Поглощение квантов непосредственно в p-n переходе приводит к аналогичным результатам. Величина, на которую возрастает обратный ток, называется фототоком.

Свойства фотодиода можно охарактеризовать следующими характеристиками.

а) вольт-амперная характеристика фотодиода представляет собой зависимость светового тока при неизменном световом потоке и темнового тока Iтемн от напряжения.

б) световая характеристика фотодиода, то есть зависимость фототока от освещенности, соответствует прямой пропорциональности фототока от освещенности. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.

г) спектральная характеристика фотодиода – это зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещенной зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.

д) постоянная времени – это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.

е) темновое сопротивление – сопротивление фотодиода в отсутствие освещения.

ж) интегральная чувствительность
K = Iф/ ,
где Iф – фототок,

– освещенность.

з) инерционность.

Существует 3 физических фактора, влияющих на инерционность: 1) время диффузии или дрейфа неравновесных носителей через базу  ; 2) время пролета через p-n переход i ; 3) время перезарядки барьерной емкости p-n перехода, характеризующееся постоянной времени RСбар.

1. Что такое светодиод?



Светодиод - это полупроводниковый прибор с электронно-дырочным переходом, разновидность обычного диода, который излучает свет при пропускании через него тока в прямом направлении.

У светодиода есть общепринятая аббревиатура - LED (light-emitting diode), что в дословном переводе на русский язык означает "светоизлучающий диод".

Излучаемый светодиодом свет лежит в узком диапазоне спектра, то есть его кристалл изначально излучает конкретный цвет (если речь идёт о светодиоде видимого диапазона) - в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

В зависимости от типа, светодиоды могут иметь разную яркость и цвет свечения: красный, зелёный, синий, жёлтый. Существуют светодиоды невидимого спектра излучения: инфракрасные (широко применяемые в системах дистанционного управления), ультрафиолетовые.

2. Достоинства и недостатки



Светодиоды обладают неоспоримыми преимуществами по сравнению с такими традиционными источниками света, как лампы накаливания и газоразрядные лампы. К основным их преимуществам относится:

1. Длительность эксплуатации. Срок службы светодиодов намного превышает срок службы всех других источников света. Он составляет более 50000 часов, что равносильно 25-ти годам эксплуатации, при среднедневной работе 8 часов. Такой долгий срок службы объясняется долговечностью всех элементов, из которых состоит светодиод. В течении всего этого времени, характеристики светодиодов (световой поток, яркость, сила света) практически не меняются. По истечении указанного времени, светодиодные светильники продолжают работать, несколько снизив свою яркость. Для сравнения, срок работы металлогалогенной лампы составляет 3000 часов, галогенной лампы - 1000 часов.

2. Экономичность в отношении энергопотребления. По сравнению с другими лампами (люминесцентными и газоразрядными лампами ДРЛ и ДНАТ), светодиоды потребляют на 90% электроэнергии меньше.

3. Экологическая безопасность. Как известно, в колбах люминесцентных и ртутных ламп содержатся пары ртути. В зависимости от вида лампы, количество ртути в них колеблется от 20 до 300 мг., в некоторых лампах оно достигает 350-560 мг. Ртуть является веществом, относящимся к чрезвычайно опасным ядам (1-ый класс опасности). Она токсична в любом виде, однако соединения, в которых она находится в люминесцентных лампах, являются наиболее токсичными. Утечка паров ртути из лампы, в результате ее повреждения, представляет большую опасность для живых существ. Причем нужно иметь в виду, что ртуть может испаряться в течение очень долгого времени, продолжая наносить непоправимый вред людям, находящимся рядом с ней. Утечка паров ртути из поврежденных и разбитых люминесцентных ламп приводит к долговременному загрязнению окружающей среды, становящейся вредной для человека и животных. Хрупкость люминесцентных ламп увеличивает риск заражения окружающей среды.

4. Высокая надежность. Это качество светодиодов обеспечивается высокой прочностью и надежностью элементов, из которых они состоят. Корпус светильника изготовлен из алюминиевых сплавов и поликарбоната, обладающих высокой степенью защищенности от внешних механических воздействий. Благодаря отсутствию нити накаливания, LED-лампы являются виброустойчивыми.

5. Высокое качество освещения. Освещенность, создаваемая светодиодными светильниками, имеет высокую степень контрастности. Все источники света характеризуются определенным индексом цветопередачи Ra, который определяет, насколько натурально смотрятся предметы в свете этого источника света. Чем выше индекс Ra, тем более качественным является источник света. У современных светодиодных светильников Ra превышает значение 80.

Светодиоды имеют богатый спектр излучения, обеспечивающий нужную температуру цвета.

Лампы, используемые в настоящее время для освещения дорог и улиц (такие как ДНАТ, ДНАЗ), обладают узким спектром излучения, не обеспечивающим хорошей цветопередачи. Для их света характерна желтая окраска, что является существенным недостатком. Исследования показывают, что белый свет, который испускают светодиодные светильники, является более предпочтительным. Он на 40-100%, в сравнении со светом других источников, повышает ночное видение - за счет увеличения контрастности и лучшего восприятия глубины пространства.

6. Отсутствие стробоскопического эффекта. В светодиодах отсутствует вредные для глаз низкочастотные пульсации, которые вызывают так называемый стробоскопический эффект (зрительную иллюзию, при которой зрение становится, как бы, прерывистым). Этот эффект приводит к повышенной утомляемости глаз при работе, поэтому его наличие является нежелательным. Газоразрядные и люминесцентные светильники, как известно, вызывают стробоскопический эффект.

7. Возможность регулировки освещенности. При использовании светодиодных источников появляется возможность дополнительной экономии электроэнергии за счет регулировки освещенности светильников, установленных на улицах. Силу света LED-светильника можно легко регулировать аппаратным способом, что позволяет снижать освещенность уличных фонарей (на 30-50%) в определенный период ночи, когда необходимость в ярком освещении исчезает. Для этого потребуется всего лишь установка переключателя на подстанции, с помощью которого могут включаться разные режимы питания уличного освещения. Газоразрядные лампы, как известно, лишены такой возможности.

8. Быстрый выход на рабочие режимы. Светодиодные светильники практически мгновенно выходят на максимальную силу света. Это их свойство не зависит от температуры воздуха, они легко зажигаются и нормально работают даже при экстремальной температуре в - 60°С. Газоразрядные лампы (ДРЛ, ДНАТ), как известно, набирают номинальную силу света постепенно. Кроме того, они очень плохо запускаются при пониженном напряжении и низкой температуре воздуха.

9. Стабильность параметров. Рабочие параметры светодиодных светильников (яркость, сила света) не претерпевают сколько-нибудь заметных изменений в течение всего срока эксплуатации.

Недостатков у светодиодов очень мало. К ним относятся:

1. Высокая стоимость led-светодиодов - пожалуй, главный их недостаток по сравнению с другими источниками света. Пока что цена одного люмена, излученного светодиодом, в 100 раз выше, чем галогенной лампой. Но в тоже время дорогие LED-изделия, то есть светодиоды, окупают свою стоимость сроком службы. И хотя цена светодиодного модуля остается выше стоимости неоновой лампы такой же яркости практически в два раза, производители во всем мире работают над удешевлением светодиодной продукции, продолжая наращивать мощности и темпы производства. Если посчитать совокупные затраты на приобретение и эксплуатацию источников света за длительный временной промежуток, окажется, что затраты на светодиоды будут в 2 - 2,5 раза ниже затрат на обычные лампы.

2. Миниатюрность - не всегда достоинство, особенно для светильников. Скажем, для создания объемных светящихся букв больших размеров необходимо объединить в группы множество отдельных светодиодов - только так можно получить яркий и насыщенный свет, привлекающий внимание. Для таких целей необходимо создавать унифицированные модули: один или два светодиода. Из них можно сконструировать практически любой рекламный образ.светодиод полупроводниковый прибор

3. Электрические и оптические характеристики светодиодов
Светодиод - низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше - от нескольких сотен мА до 1А в проекте.

В светодиодном модуле отдельные светодиоды могут быть включены последовательно, и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.

Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Для светодиода необходимо стабилизировать ток.

В рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

Источник питания для светодиодных устройств он же блок питания, принято называть драйвером. Этот термин придуман специально для светодиодных блоков питания с целью избегания возможной путаницы.

От драйвера напрямую зависит качество работы светодиодного устройства и его срок службы.

Список литературы



1. Алфёров Ж.И. // Физика и техника полупроводников. 1998. Т.32. №1. С.3-18.

2. Берг А., Дин П. Светодиоды / Пер. с англ. под ред.А.Э. Юновича.

М., 1979.

3. Коган Л.М. Полупроводниковые светоизлучающие диоды. М., 1983.

4. Лосев О.В. У истоков полупроводниковой техники: Избранные труды.Л., 1972.

5. Мадьяри Б. Элементы оптоэлектроники и фотоэлектрической автоматики. М., 1979.

6. Неменов Л.Л., Соминский М.С. Основы физики и техники полупроводников.Л., 1974.

7. Носов Ю.Р. Оптоэлектроника. Физические основы, приборы и устройства. М., 1978.

8. Светодиодные лампы, фонари, светильники - продукция и подсветка по технологии 21 века: [Электронный ресурс]. Режим доступа: http://www.ledlight.com.ua/articles/revolution.html

9. Еще раз о достоинствах светодиодов: [Электронный ресурс]. Режим доступа: http://www.onlyleds.ru/content/view/89/49/

10. Светодиод: [Электронный ресурс]. Режим доступа: https: // ru. wikipedia.org/wiki/Светодиод.

11. Оптические аспекты светодиодов: [Электронный ресурс]. Режим доступа: http://led22.ru/ledstat/svetodiod-dla-chainikov/svetodiod-dla-chainikov.html

12. Светодиоды, экономия, кризисные варианты: [Электронный ресурс]. Режим доступа: http://expertunion.ru/metodiki-osvescheniya/svetodiodyi-ekonomiya-krizisnyie-variantyi.html



написать администратору сайта