Главная страница
Навигация по странице:

  • Врожденный, или видовой, иммунитет

  • Видовой иммунитет может быть абсолютным и относительным

  • Приобретенный иммунитет

  • В отличие от приобретенного иммунитета

  • Приобретенный иммунитет может быть активным и пассивным

  • 2. История развития иммунологии. Основные направления современной иммунологии.

  • Эмиль фон Беринг и Китазато

  • Питер Медавар

  • 3. Иммунная система организма. Структура и основные функции. Структура иммунной системы.

  • Функции иммунной системы.

  • 4. Центральные и периферические органы иммунной системы. Строение и функции.

  • 5. Гуморальные факторы врожденного иммунитета (белки системы комплемента, белки острой фазы, белки теплового шока, цитокины, антимикробные пептиды и др.)

  • Семейство интерферонов.

  • Ответы на коллок по микробиологии МГМУ. Микра 4 коллок. 1. Иммунитет. Определение, виды и их сравнительная характеристика


    Скачать 0.68 Mb.
    Название1. Иммунитет. Определение, виды и их сравнительная характеристика
    АнкорОтветы на коллок по микробиологии МГМУ
    Дата07.02.2022
    Размер0.68 Mb.
    Формат файлаpdf
    Имя файлаМикра 4 коллок.pdf
    ТипДокументы
    #353946
    страница1 из 13
      1   2   3   4   5   6   7   8   9   ...   13

    1. Иммунитет. Определение, виды и их сравнительная
    характеристика.
    Иммунитет – это способ защиты организма от генетически чужеродных веществ – антигенов экзогенного и эндогенного происхождения, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма, биологической
    (антигенной)индивидуальности каждого организма и вида в целом.
    Различают несколько основных видов иммунитета.
    Врожденный, или видовой, иммунитет, он же наследственный, генетический, конституциональный — это выработанная в процессе филогенеза генетически закрепленная, передающаяся по наследству невосприимчивость данного вида и его индивидов к какому-либо антигену
    (или микроорганизму), обусловленная биологическими особенностями самого организма, свойствами данного антигена, а также особенностями их взаимодействия.
    Примером может служить невосприимчивость человека к некоторым возбудителям, в том числе к особо опасным для сельскохозяйственных животных (чума крупного рогатого скота, болезнь Ньюкасла, поражающая птиц, оспа лошадей и др.), нечувствительность человека к бактериофагам, поражающим клетки бактерий. К генетическому иммунитету можно также отнести отсутствие взаимных иммунных реакций на тканевые антигены у однояйцовых близнецов; различают чувствительность к одним и тем же антигенам у различных линий животных, т. е. животных с различным генотипом.
    Видовой иммунитет может быть абсолютным и относительным.
    Например, нечувствительные к столбнячному токсину лягушки могут реагировать на его введение, если повысить температуру их тела. Белые мыши, не чувствительные к какому-либо антигену, приобретают способность реагировать на него, если воздействовать на них иммунодепрессантами или удалить у них центральный орган иммунитета — тимус.

    Приобретенный иммунитет — это невосприимчивость к антигену чувствительного к нему организма человека, животных и пр., приобретаемая в процессе онтогенеза в результате естественной встречи с этим антигеном организма, например, при вакцинации.
    Примером естественного приобретенного иммунитета у человека может служить невосприимчивость к инфекции, возникающая после перенесенного заболевания, так называемый постинфекционный иммунитет (например, после брюшного тифа, дифтерии и других инфекций), а также
    «проиммуниция», т. е. приобретение невосприимчивости к ряду микроорганизмов, обитающих в окружающей среде и в организме человека и постепенно воздействующих на иммунную систему своими антигенами.
    В отличие от приобретенного иммунитета в результате перенесенного инфекционного заболевания или «скрытной» иммунизации, на практике широко используют преднамеренную иммунизацию антигенами для создания к ним невосприимчивости организма. С этой целью применяют вакцинацию, а также введение специфических иммуноглобулинов, сывороточных препаратов или иммунокомпетентных клеток. Приобретаемый при этом иммунитет называют поствакцинальным, и служит он для защиты от возбудителей инфекционных болезней, а также других чужеродных антигенов.
    Приобретенный иммунитет может быть активным и пассивным.
    Активный иммунитет обусловлен активной реакцией, активным вовлечением в процесс иммунной системы при встрече с данным антигеном (например, поствакцинальный, постинфекционный иммунитет), а пассивный иммунитет формируется за счет введения в организм уже готовых иммунореагентов, способных обеспечить защиту от антигена. К таким иммунореагентам отно- сятся антитела, т. е. специфические иммуноглобулины и иммунные сыворотки, а также иммунные лимфоциты. Иммуноглобулины широко используют для пассивной иммунизации, а также для специфического лечения при многих инфекциях (дифтерия, ботулизм, бешенство, корь и др.).
    Пассивный иммунитет у новорожденных детей создается иммуноглобулинами при плацентарной внутриутробной передаче антител от матери ребенку ииграет существенную роль в защите от многих детских инфекций в первые месяцы жизни ребенка.
    2. История развития иммунологии. Основные
    направления современной иммунологии.
    Иммунология как определенное направление исследований возникла из практической необходимости борьбы с инфекционными заболеваниями. Как отдельное научное направление иммунология сформировалась лишь во второй половине ХХ века. Гораздо более продолжительна истории иммунологии как прикладного раздела инфекционной патологии и микробиологии. Многовековые наблюдения за заразными болезнями заложили фундамент современной иммунологии: несмотря на широкое распространение чумы (V век до н.э.), никто не заболевал дважды, по крайней мере смертельно и для захоронения трупов использовали переболевших.
    Имеются свидетельства тому, что первые прививки оспы проводили в Китае за тысячу лет до Рождества Христова. Инокуляция содержимого оспенных пустул здоровым людям с целью их защиты от острой формы заболевания распространилась затем в Индию, Малую Азию, Европу, на Кавказ.
    На смену инокуляции пришел метод вакцинации (от лат. «vacca» - корова), разработанный в конце XVIII в. английским врачом Э. Дженнером. Он обратил внимание на тот факт, что молочницы, ухаживавшие за больными животными,
    иногда заболевали в крайне слабой форме оспой коров, но при этом никогда не болели натуральной оспой. Подобное наблюдение давало в руки
    исследователя реальную возможность борьбы с болезнью людей. В 1796 г., через 30 лет после начала своих изысканий Э. Дженнер решился опробовать метод вакцинации коровьей оспой. Эксперимент прошел успешно и с тех пор способ вакцинации по Э. Дженнеру нашел широкое применение во всем мире.
    Зарождение инфекционной иммунологии связывают с именем выдающегося французского ученого Луи Пастера. Первый шаг к целенаправленному поиску вакцинных препаратов, создающих устойчивый иммунитет к инфекции, был сделан после наблюдения Пастера над патогенностью возбудителя куриной холеры. Из этого наблюдения Пастер сделал вывод: состарившаяся культура, потеряв свою патогенность, остается способной к созданию устойчивости к инфекции. Это определило на многие десятилетия принцип создания вакцинного материала - тем или иным способом (для каждого возбудителя своим) добиваться снижения вирулентности патогена при сохранении его иммуногенных свойств.
    Хотя Пастер разработал принципы вакцинации и успешно применял их на практике, он не знал о факторах, включенных в процесс защиты от инфекции.
    Первыми, кто пролил свет на один из механизмов невосприимчивости к инфекции, были Эмиль фон Беринг и Китазато. Они продемонстрировали, что сыворотка от мышей, предварительно иммунизированных столбнячным токсином, введенная интактным животным, защищает последних от смертельной дозы токсина. Образовавшийся в результате иммунизации сывороточный фактор - антитоксин - представлял собой первое обнаруженное специфическое антитело. Работы этих ученых положили начало изучению механизмов гуморального иммунитета.
    У истоков познания вопросов клеточного иммунитета стоял русский биолог- эволюционист Илья Ильич Мечников. В 1883 году он сделал первое сообщение по фагоцитарной теории иммунитета на съезде врачей и естествоиспытателей в Одессе. У человека есть амебоидные подвижные клетки - макрофаги, нейтрофилы. «Едят» они пищу особого рода - патогенных микробов, функция этих клеток - борьба с микробной агрессией.
    Параллельно с Мечниковым разрабатывал свою теорию иммунной защиты от инфекции немецкий фармаколог Пауль Эрлих. Он знал о том факте, что в сыворотке крови животных, зараженных бактериями, появляются белковые вещества, способные убивать патогенные микроорганизмы. Эти вещества впоследствии были названы им «антителами». Самое характерное свойство антител - это их ярко выраженная специфичность. Образовавшись как защитное средство против одного микроорганизма, они нейтрализуют и разрушают только его, оставаясь безразличными к другим.
    Две теории - фагоцитарная (клеточная) и гуморальная - в период своего возникновения стояли на антагонистических позициях. Школы Мечникова и
    Эрлиха боролись за научную истину, не подозревая, что каждый удар и каждое его парирование сближало противников. В 1908 г. обоим ученым одновременно была присуждена Нобелевская премия.
    К концу 40-х - началу 50-х годов ХХ столетия завершается первый период развития иммунологии. Был создан целый арсенал вакцин против самого широкого набора инфекционных заболеваний. Эпидемии чумы, холеры, оспы перестали уничтожать сотни тысяч людей. Отдельные, спорадические вспышки этих заболеваний встречаются до сих пор, но это лишь очень локальные, не имеющие эпидемиологического, а тем более пандемического значения случаи.
    Новый этап развития иммунологии связан в первую очередь с именем выдающегося австралийского ученого М.Ф. Бернета. Именно он в значительной степени определил лицо современной иммунологии.
    Рассматривая иммунитет как реакцию, направленную на дифференциацию всего «своего» от всего «чужого», он поднял вопрос о значении иммунных механизмов в поддержании генетической целостности организма в период
    индивидуального (онтогенетического) развития. Именно Бернет обратил внимание на лимфоцит как основной участник специфического иммунного реагирования, дав ему название «иммуноцит». Именно Бернет предсказал, а англичанин Питер Медавар и чех Милан Гашек экспериментально подтвердили состояние, противоположное иммунной реактивности - толерантности. Именно Бернет указал на особую роль тимуса в формировании иммунного ответа. И, наконец, Бернет остался в истории иммунологии как создатель клонально-селекционной теории иммунитета. Формула такой теории проста: один клон лимфоцитов способен реагировать только на одну конкретную, антигенную, специфическую детерминанту.
    Особого внимания заслуживают взгляды Бернета на иммунитет как на такую реакцию организма, которая отличает все «свое» от всего «чужого». После доказательства Медаваром иммунологической природы отторжения чужеродного трансплантата, после накопления фактов по иммунологии злокачественных новообразований стало очевидным, что иммунная реакция развивается не только на микробные антигены, но и тогда, когда имеются любые, пусть незначительные антигенные различия между организмом и тем биологическим материалом (трансплантатом, злокачественной опухолью), с которым он встречается.
    Частная иммунология носит прикладной характер; основные направления — вакцинология, иммуноонкология, иммунопатология, аллергология, трансплантационная иммунология. Вакцинология изучает методы искусственного создания невосприимчивости к инфекционным агентам и принципы разработки новых вакцинных препаратов. Трансплантационная иммунология изучает иммунную несовместимость тканей, отторжение трансплантатов, условия и способы преодоления несовместимости.
    Иммуноонкология — наука, изучающая роль иммунной системы в развитии злокачественных заболеваний. Иммунопатология и аллергология изучают нарушения иммунных реакций и механизмы развития извращённых реакций на Аг. Разработка новых методов иммунодиагностики заболеваний, создание средств и способов коррекции иммунных нарушений — не менее актуальные направления современной иммунологии.
    3. Иммунная система организма. Структура и основные
    функции.
    Структура иммунной системы. Иммунная система представлена лимфоидной тканью. Это специализированная, анатомически обособленная ткань, разбросанная по всему организму в виде различных лимфоидных образований. К лимфоидной ткани относятся вилочковая, или зобная, железа, костный мозг, селезенка, лимфатические узлы (групповые лимфатические фолликулы, или пейеровы бляшки, миндалины, подмышечные, паховые и другие лимфатические образования, разбросанные по всему организму), а также циркулирующие в крови лимфоциты.
    Функции иммунной системы. Иммунная система выполняет функцию специфической зашиты от антигенов, представляющую собой лимфоидную ткань, способную комплексом клеточных и гуморальных реакций, осуществляемых с помощью набора иммунореагентов, нейтрализовать, обезвредить, удалить, разрушить генетически чужеродный антиген, попавший в организм извне или образовавшийся в самом организме.
    Специфическая функция иммунной системы в обезвреживании антигенов дополняется комплексом механизмов и реакций неспецифического характера,
    направленных на обеспечение резистентности организма к воздействию любых чужеродных веществ, в том числе и антигенов.

    4. Центральные и периферические органы иммунной системы.
    Строение и функции.
    Центральные: костный мозг и тимус.
    Периферические: селезенка, лимфатические узлы, лимфоидная ткань ассоциированная со слизистыми.
    Лимфоидная ткань состоит из ретикулярных клеток, составляющих остов ткани, и лимфоцитов, находящихся между этими клетками. Основными функ- циональными клетками иммунной системы являются лимфоциты, подразделяющиеся на Т- и В-лимфоциты и их субпопуляции. Общее число лимфоцитов в человеческом организме достигает 10 12
    , а общая масса лимфоидной ткани составляет примерно 1—2 % от массы тела.
    В центральных органах иммунной системы постоянно идут процессы пролиферации клеток-предшественниц Т- и В-лимфоцитов, их созревания
    (дифференцировки), их отбора (селекции), сопровождающиеся их частичной гибелью или транспортировкой созревающих клеток через кровь в периферические органы.
    Периферические органы иммунной системы являются местом встречи Т-и В- лимфоцитов с поступающими туда антигенами, местом распознавания антигенов и развития последовательных стадий специфического иммунного ответа на данный антиген. Распознавание антигена лимфоцитом служит сигналом его усиленной пролиферации, ускоренной дифференцировки и активации. В-лимфоциты после активации в периферических органах иммунной системы дифференцируются в плазматические клетки, продуцирующие и секретирующие антитела — иммуноглобулины.
    Активированные Т- и В-лимфоциты в периферических органах иммунной системы продуцируют и секретируют межклеточные медиаторы — цитокины, влияющие на иммунный ответ. Там же, в периферических органах иммунной системы, накапливаются и сохраняются долгоживущие Т- и В-лимфоциты, ответственные за поддержание «иммунологической памяти» о встрече с данным антигеном.
    5. Гуморальные факторы врожденного иммунитета
    (белки системы комплемента, белки острой фазы,
    белки теплового шока, цитокины, антимикробные
    пептиды и др.)
    Система комплемента - это многокомпонентная полиферментная самособирающаяся система сывороточных белков, которые в норме находятся в неактивном состоянии. При появлении во внутренней среде микробных продуктов запускается процесс, который называют активацией комплемента.
    Активация протекает по типу каскадной реакции, когда каждый предшествующий компонент системы активирует последующий. В процессе самосборки системы образуются активные продукты распада белков, которые выполняют три важнейшие функции: вызывают перфорацию мембран и лизис клеток, обеспечивают опсонизацию микроорганизмов для их дальнейшего фагоцитоза и инициируют развитие сосудистых реакций воспаления.
    В систему комплемента входит 9 основных белков (обозначаемых как С1, С2-
    С9), а также субкомпоненты - продукты расщепления этих белков (Clg, С3в,
    С3а и т.д.), ингибиторы.

    Белки теплового шока (
    англ.
    HSP, Heat shock proteins) — это класс функционально сходных белков, экспрессия которых усиливается при повышении температуры или при других стрессирующих клетку условиях. Повышение экспрессии генов, кодирующих белки теплового шока, регулируется на этапе транскрипции
    . Чрезвычайное усиление экспрессии генов, кодирующих белки теплового шока является частью клеточного ответа на тепловой шок и вызывается в основном фактором теплового шока
    (HSF англ.
    heat shock factor).Белки теплового шока обнаружены в клетках практически всех живых организмов, от бактерий до человека
    Цитокины
    Под термином “цитокины” объединяются так называемые ростовые факторы, которые регулируют пролиферацию, дифференцировку и функцию клеток крови, в том числе и клеток иммунной системы. Это обширный класс биохимических веществ, продуцируемый большинством свободных клеток крови, для общения друг с другом, через поверхностные рецепторы на их мембранах. Цитокины оказывают аутокринное и паракринное воздействие.
    Цитокины можно разделить на несколько “семейств”: интерлейкины, интерфероны, опухольнекротизирующие факторы, трансформирующие факторы роста, хемокины, собственно ростовые факторы и др
    Семейство интерферонов. Интерференция - это явление, когда ткани, инфицированные одним вирусом, становятся устойчивыми к заражению другим вирусом. Было установлено, что такая резистентность связана с продукцией зараженными клетками особого белка, который и был назван интерфероном.
    В настоящее время интерфероны хорошо изучены. Они представляют собой семейство гликопротеидов с молекулярной массой от 15 000 до 70 000. В зависимости от источника получения эти белки делят на интерфероны I и II типов.
    I тип включает ИФН α и β, которые продуцируются инфицированным вирусом клетками: ИФН-α - лейкоцитами, ИФН-β - фибробластами. В последние годы описаны три новых интерферона: ИФН-τ
    /
    ε (трофобластный ИФН), ИФН-λ и
    ИФН-К. В противовирусной защите участвуют ИФН-α и β.
    Механизм действия ИФН-α и β не связан с прямым влиянием на вирусы. Он обусловлен активацией в клетке ряда генов, блокирующих репродукцию вируса. Ключевое звено - индукция синтеза протеинкиназы R, которая нарушает трансляцию вирусной мРНК и запускает апоптоз зараженных клеток через Вс1-2 и каспазазависимые реакции. Другой механизм - это активация латентной РНК-эндонуклеазы, которая вызывает деструкцию вирусной нуклеиновой кислоты.
    II тип включает интерферон γ. Он продуцируется Т-лимфоцитами и естественными киллерами после антигенной стимуляции.
    Эйкозаноиды
    Эйкозаноиды - метаболиты арахидоновой кислоты, которая, в свою очередь освобождается из мембранных фосфолипидов в ходе липолиза под действием фосфолипаз. Одни эйкозаноиды являются продуктами циклооксигеназного пути: простагландины, простациклин и тромбоксан, другие - продуктами липоксигеназного пути: лейкотриены.
    Эйкозаноиды принадлежат к классу аутокринных или паракринных факторов.
    Они усиливают или ослабляют действие других агонистов, т.е. их относят к третьим посредникам, к короткоживущим интермедиатам.
      1   2   3   4   5   6   7   8   9   ...   13


    написать администратору сайта