Главная страница
Навигация по странице:

  • Прочность строительных материалов и методы ее оценки.

  • Гидрофизические свойства строительных материалов. Водостойкость. Морозостойкость и методы ее оценки.

  • Гигроскопичность

  • Капиллярное всасывание

  • Водостойкость

  • Морозостойкость

  • Огнестойкость и огнеупорность строительных материалов.

  • Паро- и газонепроницаемость строительных материалов.

  • Стандартизация материалов.

  • Архитектура государственный экзамен


    Скачать 328.91 Kb.
    НазваниеАрхитектура государственный экзамен
    Дата01.07.2022
    Размер328.91 Kb.
    Формат файлаdocx
    Имя файла75-otvety-stroitelstvo.docx
    ТипДокументы
    #621832
    страница1 из 13
      1   2   3   4   5   6   7   8   9   ...   13

    АРХИТЕКТУРА – ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН

    1. Схемы испытаний образцов для определения прочности материалов при сжатии, изгибе и растяжении.

    Определение прочности материалов и конструкций связано с доведением их до предельного состояния - разрушения. Однако последние достижения в области физики твердого тела, электроники, математики позволяют оценить прочность изделия не разрушая его. Это достигается установлением эмпирических связей между прочностью и комплексом физических параметров, которые можно определять непосредственно в изделии, не разрушая его структуры.

    Для определения прочности материала (в виде специально изготовленных образцов круглого или прямоугольного сечения определенных размеров) проводят испытания на растяжение и сжатие. При испытании на растяжение образец зажимают в захваты испытательной машины и нагружают вдоль оси возрастающей силой Р до разрыва образца.

    Метод определения прочности материалов при растяжении основан на измерении величины разрушающей силы при растяжении образца постепенно увеличивающейся нагрузкой.

    При определении прочности материала в изделии прозвучивание производят тем же прибором, которым испытывались контрольные образцы, и, пользуясь тарировочными кривыми, находят их прочность.

    Какие схемы испытаний используются для определения прочности материалов при сжатии, изгибе, растяжении.

    Большое значение имеют также результаты по определению прочности материалов при наличии концентраторов напряжений, а также сварных, паяных и клепаных соединений.

    Вероятность имеет важнейшее значение и при определении прочности материалов. На основе статистического анализа многих данных научные учреждения устанавливают определенный минимум прочности материала - так называемое расчетное сопротивление. Это - как раз величина RQ, та самая прочность, которую должны показать образцы из Стали 3 при контрольных испытаниях.

    Испытания на разрыв применяются главным образом для определения прочности материала на разрыв при растяжении. Такое тестирование обеспечивает данные для исследований, разработок и инженерных решений, а также для контроля качества и технических характеристик.

    Какие формы образцов и схемы испытаний используются для определения прочности материалов при сжатии, изгибе, растяжении.

    Общий вывод заключается в том, что при определении прочности материала для расчета конструкций следует испытывать композит, а не само волокно. Сравнение с данными, полученными при испытании стренг, свидетельствует об эффективности метода их получения. Для определения истинного напряжения волокна в момент разрушения требуется детальный анализ напряжений.

    Испытание прочности материала в изделиях сводится к построению тарировочного графика и определению прочности материала с помощью этого графика по результатам прозвучивания изделия одним из импульсных ультразвуковых приборов, указанных выше.

    Если необходимо определить прочность материала катализатора, можно ограничиться испытанием целых шариков диаметром от 3 0 до 4 0 мм; этот метод можно назвать определение прочности материала катализатора. Когда важно знать прочность какой-нибудь пробы, необходимо испытывать данную пробу, и можно его назвать определение прочности пробы. Естественно, в последнем случае сходимость результатов испытания будет ниже, чем при испытании узкой фракции, вследствие того, что проба состоит из шариков разного диаметра.

    1. Прочность строительных материалов и методы ее оценки.

    Упругость - свойство твердого тела самопроизвольно восстанавливать первоначальную форму после прекращения действия внешней силы. Упругая деформация, полностью исчезающая после снятия внешней нагрузки, называется обратимой.

    Пластичность характеризует способность материала под действием внешних сил изменять первоначальную форму без нарушения сплошности структуры. После снятия нагрузки пластичный материал не восстанавливает первоначальной формы. Пластическая (остаточная) деформация, не исчезающая после снятия нагрузки, называется необратимой.

    Под действием внешних нагрузок в материале возникают внутренние силы упругости, стремящиеся возвратить его в первоначальное состояние. Физическая величина, которая характеризует интенсивность внутренних сил, приходящихся на единицу площади сечения, называется механическим напряжением.

    При одноосном растяжении или сжатии напряжение о определяют по формуле а = F/A, где F - действующая сила; А - площадь первоначального поперечного сечения элемента. Прочностью называют свойство материала сопротивляться разрушению под действием напряжений, вызванных внешними силами. Количественная характеристика прочности — это предел прочности, численно  равный  напряжению, при  котором материал  разрушается.

    Для экспериментального определения предела прочности материала используют образцы правильной геометрической формы — кубы, призмы, цилиндры, стержни, полоски. Размеры образцов, процедура испытания, вид и скорость нагружения, правила обработки результатов выдерживаются в строгом соответствии с требованиями стандарта. Чаще всего испытывают материалы сжимающей или растягивающей нагрузкой.

    Большинство строительных материалов - это хрупкие тела, которые разрушаются без заметных пластических деформаций. Предел прочности при сжатии таких материалов, как бетон, гораздо больше предела прочности при растяжении. Это значит, что их можно использовать только для возведения сжимаемых конструкций - колонн, стен.

    Некоторые материалы характеризуются прочностью при растяжении, равной или большей прочности при сжатии (сталь, древесина). Их применяют в изгибаемых или растягиваемых конструкциях - балках, ригелях, элементах строительных ферм. Для расширения конструктивных возможностей хрупких каменных материалов в их состав вводят элементы, хорошо сопротивляющиеся растяжению. Например, сочетание бетона со стальной арматурой дает железобетон.

    Для оценки сравнительной эффективности конструкционных материалов используют понятие удельной прочности, т.е. прочности, которая приходится на единицу массы конструкции.

    Если выражать среднюю плотность материала по отношению к плотности воды, равной 1 г/см3, то рт оказывается безразмерной величиной. В этом случае размерность АГКК будет та же, что и предела прочности, т.е. МПа.  

    Для возведения несущих конструкций эффективны такие материалы, в которых высокая прочность сочетается со сравнительно низкой плотностью.

    Модуль упругости характеризует жесткость материала, его способность деформироваться под влиянием внешних сил. Чем выше Е, тем менее материал склонен к деформациям. Такие конструкционные материалы, как сталь, железобетон, отличаются высокими значениями модуля упругости.

    1. Гидрофизические свойства строительных материалов. Водостойкость. Морозостойкость и методы ее оценки.

    Свойства, связанные с воздействием на материал воды, называются гидрофизическими.

    Гигроскопичность — свойство пористо-капиллярного материала поглощать влагу из воздуха.

    Степень поглощения зависит от температуры и относительной влажности воздуха. С увеличением относительной влажности и снижением температуры воздуха гигроскопичность повышается. 

    Гигроскопичность характеризуют отношением массы поглощенной материалом влаги при относительной влажности воздуха 100% и температуре +20 °С к массе сухого материала.

    Гигроскопичность отрицательно сказывается на качестве строительных материалов. Так, цемент при хранении под влиянием влаги воздуха комкуется и снижает свою прочность. Весьма гигроскопична древесина, от влаги воздуха она разбухает, коробится, трескается. 

    Чтобы уменьшить гигроскопичность деревянных конструкций и предохранить их от разбухания, древесину покрывают масляными красками и лаками, пропитывают полимерами, которые препятствуют проникновению влаги в материал.

    Капиллярное всасывание  - свойство пористо-капиллярных материалов поднимать воду по капиллярам. Оно вызывается силами поверхностного натяжения, возникающими на границе раздела твердой и жидкой фаз. 

    Капиллярное всасывание характеризуют высотой поднятия уровня воды в капиллярах материала, количеством поглощенной воды и интенсивностью всасывания. Когда фундамент находится во влажном грунте, грунтовые воды могут подниматься по капиллярам и увлажнять низ стены здания. 

    Во избежание сырости в помещении устраивают слой гидроизоляции отделяющий фундамент от стены. 

    С увеличением капиллярного всасывания снижаются прочность, стойкость к химической и морозостойкость строительных материалов.

    Водопоглощение - свойство материала при непосредственном соприкосновении с водой впитывать и удерживать ее в своих порах.

    Водопоглощение выражают степенью заполнения объема материала водой (водопоглощение по объему Wо) или отношением количества поглощенной воды к массе сухого материала.

    У высокопористых материалов водопоглощение по массе может превышать пористость, но водопоглощение по объему всегда меньше пористости, так как вода не проникает в очень мелкие поры, а в очень крупных не удерживается. Водопоглощение плотных материалов (сталь, стекло, битум) равно нулю. 

    Водопоглощение отрицательно сказывается на других свойствах материалов: понижаются прочность и морозостойкость, материал набухает, возрастает его теплопроводность и увеличивается плотность.

    Влажность — отношение массы воды, находящейся в данный момент в материале, к массе (реже к объему) материала в сухом состоянии. 

    Вычисляется по тем же формулам, что и водопоглощение, и выражается в процентах. При этом массу материала берут в естественно влажном, а не в насыщенном водой состоянии.

    При транспортировании, хранении и применении материалов имеют дело не с водопоглощением, а с их влажностью. Влажность меняется от 0 % (для абсолютно сухих материалов) до значения полного водопоглощения и зависит от пористости, гигроскопичности и других свойств материала, а также от окружающей среды — относительной влажности и температуры воздуха, контакта материала с водой и т. д. 

    Для многих строительных материалов влажность нормирована. Например, влажность молотого мела — 2 %, комового — 12, стеновых материалов — 5...7, воздушно-сухой древесины 12...18%.

    Поскольку свойства сухих и влажных материалов весьма различны, необходимо учитывать как влажность материала, так и его способность к поглощению воды. 
    Во всех случаях - при транспортировании, хранении и применении - строительные материалы предохраняют от увлажнения.

    Водостойкость — свойство материала сохранять прочность при насыщении его водой. 

    Критерием водостойкости строительных материалов служит коэффициент размягчения Кр = К/Кс— отношение прочности при сжатии материала, насыщенного водой прочности сухого материала Кс - Он изменяется от 0 (для глины) до 1 (стекло, металлы). 

    Материалы, у которых коэффициент размягчения больше 0,75, называют водостойкими.

    Морозостойкость — свойство материала в насыщенном водой состоянии выдерживать многократное число циклов попеременного замораживания и оттаивания без видимых признаков разрушения и без значительного снижения прочности и массы. 

    Морозостойкость — одно из основных свойств, характеризующих долговечность строительных материалов в конструкциях и сооружениях. При смене времен года некоторые материалы, подвергаясь периодическому замораживанию и оттаиванию в обычных атмосферных условиях, разрушаются. Это объясняется тем, что вода, находящаяся в порах материала, при замерзании увеличивается в объеме примерно на 9...10%; только очень прочные материалы способны выдерживать это давление льда (200 МПа) на стенки пор.

    Высокой морозостойкостью обладают плотные материалы, которые имеют малую пористость и закрытые поры.

    Материалы пористые с открытыми порами и соответственно с большим водопоглощением часто оказываются не морозостойкими. Материалы у которых после установленных для них стандартом испытаний, состоящих из попеременного многократного замораживания (при температуре не выше —17 °С) и оттаивания (в воде), не появляются трещины, расслаивание, выкрашивание и которые теряют не более 25 % прочности и 5 % массы, считаются морозостойкими.

    Важно понять, что для пористых материалов особенно опасно совместное действие воды и знакопеременных температур. Морозостойкость зависит от состава и структуры материала, она снижается с уменьшением коэффициента размягчения и увеличением открытой пористости.

    Критерий морозостойкости материала — коэффициент морозостойкости Кмрз = Кмрз/Кнас — отношение предела прочности при сжатии материала после испытания к пределу прочности при сжатии водонасыщенных образцов, не подвергнутых испытанию, в эквивалентном возрасте.

    Для морозостойких материалов мрз должен быть более 0,75. Принято также считать, что если коэффициент размягчения камня не ниже 0,9, то каменный материал морозостоек.

    1. Огнестойкость и огнеупорность строительных материалов.

    Огнеупорность - свойство материала выдерживать длительное воздействие высокой температуры (от 1580°С и выше), не размягчаясь и не деформируясь. Огнеупорные материалы применяют для внутренней футеровки промышленных печей. Определяется с помощью конусов Зегера.

    По огнеупорности делятся на: высокоогнеупорные (деформируются при температуре 1800°); огнеупорные (1580°-1800°); тугоплавкие (1350°-1580°); легкоплавкие(˃1350°).

    Огнестойкость-свойство материала сопротивляться действию огня при пожаре в течение определенного времени. Она зависит от сгораемости материала, т.е. от его способности воспламеняться и гореть.

    По огнестойкости: трудносгораемые (композиты, некоторые полимеры); несгораемые (керамика, бетон, металлы); сгораемые (древесина).

    Однако необходимо учитывать, что некоторые несгораемые материалы при пожаре растрескиваются (гранит) или сильно деформируются (металлы) при температуре, начиная с 600°С. Поэтому конструкции из подобных материалов нередко приходится защищать более огнестойкими материалами.

    Сгораемые органические материалы, которые горят открытым пламенем, необходимо защищать от возгорания. Широко используют конструктивные меры, исключающие непосредственное воздействие огня на материал в условиях пожара. Применяют защитные вещества - антипирены.

    1. Паро- и газонепроницаемость строительных материалов.

    Паропроницаемость и газопроницаемость - способность материала пропускать через свою толщу водяной пар или газы (воздух). Паропроницаемость характеризуется коэффициентом паропроницаемости, численно равным количеству водяного пара, проникающего через слой материала толщиной 1 м, площадью 1 м2 в течение 1 с, и разностью парциальных давлений пара в 133,3 Па.

    Аналогичным коэффициентом оценивается и газопроницаемость (воздухопроницаемость). Эти характеристики определяются для комплексной оценки физических свойств строительного материала или при его специальном назначении. Материалы для стен жилых зданий должны обладать определенной проницаемостью (стена должна «дышать»), то есть через наружные стены происходит естественная вентиляция.

    Наоборот, стены и покрытия влажных помещений необходимо защищать с внутренней стороны от проникновения в них водяного пара, особенно зимой, когда содержание пара внутри помещения значительно больше, чем снаружи, и пар, проникая в холодную зону ограждения, конденсируется, резко повышает влажность в этих местах. В ряде случаев необходима практически полная газонепроницаемость (емкости для хранения газов и прочее).

    1. Стандартизация материалов.

    Основные требования к качеству материалов, изделий и готовых конструкций массового применения устанавливаются Государственными стандартами СССР (ГОСТ), отраслевыми стандартами (ОСТ), техническими условиями (ТУ).

    В ГОСТах и ТУ содержатся краткое описание материала и способы его изготовления, указаны марки материалов и требования к их качеству, форма и размеры и допускаемые отклонения от них, а также правила транспортирования, приемки, упаковки и хранения, обеспечивающие сохранность материала, и методы испытаний. ГОСТы и ТУ — документы, устанавливающие, что данный материал или изделие одобрены для производства и применения при определенном его качестве.

    Основные положения строительного проектирования и производства строительных работ регламентируются Строительными нормами и правилами (СНиП). СНиПы разработаны с учетом развития строительной индустрии, внедрения передовой техники в строительство, максимального использования в строительстве изделий и конструкций заводского изготовления.

    В части II СНиП «Нормы проектирования» содержатся сведения о том, в каких конструкциях и как следует применять строительные материалы с указанием необходимых требований к свойствам этих материалов.

    В стандартах и СНиПах требования к свойствам материалов выражены в виде марок на эти материалы. Марка строительных материалов — условный показатель, устанавливаемый по главнейшим эксплуатационным характеристикам или комплексу главнейших свойств материала. Так, существуют марки по прочности, плотности, морозостойкости, огнеупорности.

    Один и тот же материал может иметь несколько марок по различным свойствам. Так, кирпич маркируют по прочности и морозостойкости, но основной из них считается марка по прочности — главнейшему эксплуатационному показателю. По прочности для всех природных и искусственных каменных материалов СНиПом установлены следующие марки: 4; 7; 10; 15; 25; 35; 50; 75; 100; 125; 150; 200; 300 и т. д. до 3000. Цифра показывает минимально допустимый предел прочности материала, выраженный в кгс/см2 (например, кирпич марки 100 должен иметь прочность 10…12,5 МПа).

    Теплоизоляционные материалы делят на марки по плотности. Это объясняется тем, что теплопроводность находится в прямой зависимости от плотности, но контролировать последнюю значительно проще. Например, минеральную вату выпускают марок 75; 100; 125; 150 (в этом случае размерность марки кг/м3).
    1.   1   2   3   4   5   6   7   8   9   ...   13


    написать администратору сайта