Гидроэнергетические сист. Использование воды для получения механической энергии достаточно старая практика
Скачать 3.89 Mb.
|
1 Круговорот воды в природе происходит благодаря активности Cолнца, в результате чего вода испаряется из океанов, морей и других водных поверхностей, формирует тучи, выпадает в виде дождя или снега и попадает назад в океан. Энергия этого круговорота, движимого Солнцем, наиболее эффективно используется в гидроэнергетике. Использование воды для получения механической энергии - достаточно старая практика. Струя воды приводит в движение лопасти и может вращать их со скоростью, необходимой для производства электроэнергии. Количество энергии, вырабатываемой за счет воды, определяется перепадом высот. К другим методам применения энергии воды относится использование энергии волн, приливов и отливов, а также разности температур воды в океане. Волны - непосредственный результат действия ветра, который возникает благодаря неравномерному нагреву земли и воды Солнцем. Из нескольких типов гидроэнергии, только происхождение приливов не связано с Солнцем. Гравитационное поле Луны является причиной приливов, величина которых зависит от широты и географии места. В целом, энергия, заключённая в круговороте воды и морских волнах огромна, но использование этой энергии является достаточно трудным. Наиболее распространённым методом применения энергии воды является традиционная гидроэнергетика, т.е. технология, позволяющая производить электроэнергию за счет падающей воды. К принципиальным преимуществам гидроэнергетики можно отнести способность к быстрому восстановлению собственных ресурсов, отсутствие загрязняющих выбросов в атмосферу, возможность быстро регулировать нагрузку в сети, низкая стоимость процесса производства электроэнергии. В ходе выполнения гидроэнергетических проектов также осуществляется рекреация воды в резервуарах или отводящих каналах, расположенных ниже дамб. К недостаткам большой гидроэнергетики относятся большие капиталовложения в строительство гидроэлектростанций (ГЭС), а также вред, который наносится окружающей среде в процессе строительства и эксплуатации ГЭС. ИСТОРИЯ Простейшие водяные колеса применялись уже в древние времена для облегчения тяжёлого ручного труда человека. Энергия воды была, вероятно, впервые упомянута древними приблизительно в 4000 году до н. э. Греки использовали водяные мельницы для перемола пшеницы в муку. С изобретением водяной турбины в начале 19 века использование энергии воды стало значительно более простым и распространённым. Энергия воды была быстро приспособлена для выполнения механических работ, таких как перемалывание зерна, вращение генератора для производства электричества. Во многих регионах Европы и Северной Америки вскоре возникли и первые промышленные установки на водяных турбинах. В период, когда доступ к дешёвой нефти по всему миру стал возможен, интерес к гидроэнергетике был утрачен на долгие годы, но сейчас ситуация вновь меняется. Постоянно растущий интерес к гидроэнергетике, проявляемый правительствами, политиками, фондовыми и кредитными организациями, институтами и отдельными людьми, привел к тому, что многие проекты, ранее считавшиеся неосуществимыми, пересматриваются, определяются новые места под строительство ГЭС. 2 Лекция 2 ГИДРОЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ Типы гидроэнергетических установок 2.1. Назначение гидроэнергетических установок Гидроэнергетические установки (ГЭУ) предназначены для преобразования механической энергии воды в электрическую или, наоборот, превращения электрической энергии в механическую энергию воды. Они представляют собой предприятия, включающие в себя совокупность гидротехнических сооружений, энергетического и механического оборудования. К ГЭУ в настоящее время относят четыре типа гидроэнергетических станций: гидроэлектрические станции, приливные электростанции, гидроаккумулирующие электростанции и насосные станции. Важным достоинством ГЭУ является то, что они в сравнении с другими энергетическими установками имеют самый высокий коэффициент полезного действия (КПД) при преобразовании энергии. Для сравнения – тепловые электростанции имеют КПД от 40 до 70 %, ГЭУ – 75-95 %. Кроме того, при выработке электрической энергии ГЭУ используют возобновляемый источник энергии. При этом первоисточником данной энергии является солнце, благодаря которому на Земле осуществляется круговорот воды в природе. В последнее время с помощью ГЭУ производится приблизительно 23 % общемирового объема электроэнергии. В то же время этот объём составляет только лишь около 16 % от экономически выгодной к использованию части всех гидроэнергетических ресурсов. Среди ГЭУ наиболее распространенными и мощными являются гидроэлектрические станции. Типы гидроэнергетических установок Рис. 2.1. Плотинная схема ГЭС: 1 - водохранилище; 2 - плотина; 3 - здание ГЭС Гидроэлектрические станции (ГЭС) – это ГЭУ, которые преобразуют в электрическую энергию механическую энергию водного потока реки. Основными сооружениями ГЭС (рис. 2.1) являются плотина, перегораживающая реку и создающая подъём уровня воды, и здание станции, в котором размещаются основное (гидротурбины, генераторы электрического тока) и вспомогательное оборудование. Вода под действием силы тяжести движется через гидротурбины и вращает их рабочие колеса. С валами рабочих колес жестко скреплены роторы генераторов электрического тока. При вращении роторов генераторы преобразуют механическую энергию водного потока в электрическую, которая затем передаётся в нагрузку. Гидротурбина вместе с соединенным с ней генератором образует гидроагрегат. Высокий КПД ГЭС ( 90 %) обусловлен тем, что электроэнергия преобразуется из механической энергии непосредственно. Для тепловых станций в технологической цепочке преобразования внутренней энергии топлива в электрическую имеются промежуточные ступени преобразования энергии, связанные с выработкой пара, что, естественно, ведет к снижению КПД станции. 3 Приливные электростанции (ПЭС) – это ГЭУ, которые преобразуют в электроэнергию механическую энергию приливных колебаний уровня моря. Обычно такие колебания происходят два раза в сутки. В некоторых местах морских побережий амплитуда приливных колебаний достигает величины 8–19 м. Рис. 2.2. Схема ПЭС: а – план; б – цикл прилива; в – цикл отлива ПЭС (рис. 2.2) удобно строить, если на побережье имеется достаточных размеров залив, соединенный с морем нешироким проливом. Этот пролив перегораживают плотиной и сооружают при ней ПЭС. Когда наступает прилив или отлив, между морем и заливом образуется перепад уровней воды. Гидроагрегаты ПЭС работают и при движении воды из моря в отгороженный плотиной бассейн, и при движении воды из бассейна в море. В настоящее время ПЭС не получили широкого распространения из-за их дороговизны и малого количества удобных для строительства заливов. Гидроаккумулирующие электростанции (ГАЭС) – это ГЭУ, на которых перекачивают воду из нижнего бассейна в высоко расположенный верхний бассейн с последующим использованием потенциальной энергии этой воды для выработки электроэнергии. Схема ГАЭС, поясняющая принцип работы, представлена на рис. 2.3. ГАЭС в ночные часы суток за счёт электроэнергии, получаемой из энергосистемы, перекачивает насосами воду из нижнего бассейна в верхний (цикл заряда). Днём и особенно вечером, когда электропотребление в системе увеличивается, вода из верхнего бассейна пропускается через турбины в нижний бассейн (цикл разряда). При этом ГАЭС вырабатывает и отдает электроэнергию в систему. Таким образом, функционально ГАЭС выполняет в энергосистеме роль аккумулятора огромной энергоемкости, запасающего и хранящего энергию в виде потенциальной механической энергии воды. Вследствие неизбежных потерь энергии в процессе ее преобразования ГАЭС отдает в систему 70-75 % электрической энергии, получаемой ею из системы. Тем не менее, эти станции выгодны, поскольку аккумулируют более дешевую, а иногда и "бросовую" электроэнергию в ночные часы, в период малой нагрузки системы, а отдают более дорогую энергию в часы "пик" нагрузки. ГАЭС существенно улучшают технические условия работы тепловых и атомных электростанций и позволяют снизить их удельный расход топлива на выработку 1кВт ч электроэнергии. ГАЭС обычно строят около мощных тепловых и атомных электростанций. 4 Рис. 2.3. Схема ГАЭС: 1 - верхний бассейн; 2 - напорный трубопровод; 3 - здание ГАЭС; 4 - нижний бассейн Насосные станции (НС) – это ГЭУ, которые предназначены для перекачки воды с низких отметок на высокие и для перемещения воды в удаленные пункты. На НС устанавливаются насосные агрегаты, у которых на одном валу находится насос и электрический двигатель. НС является потребителем электрической энергии. НС имеют большое распространение. Они применяются для коммунально- бытового и промышленного водоснабжения, для водоснабжения тепловых электростанций, в ирригационных системах для подачи воды на поля, расположенные на высоких отметках или в удаленных районах, на судоходных каналах, пересекающих высокие водоразделы, и т. д. 2.3. ГИДРАВЛИЧЕСКИЕ ОСНОВЫ ГИДРОЭНЕРГЕТИКИ Полная механическая энергия воды, т.е. сумма ее потенциальной и кинетической энергий, называется гидравлической энергией. Гидравлическая энергия водных ресурсов, выраженная в киловаттах среднегодовой мощности или киловатт-часах энергии, определяет запасы гидроэнергетических ресурсов. Водные и гидроэнергетические ресурсы являются фундаментом всей гидроэнергетики. Гидроэнергетика широко использует положения гидравлики, изучающей законы равновесия и механического движения жидкости. Ниже приведём основные положения гидравлики и на их основе рассмотрим методику практического подсчёта гидроэнергетических ресурсов рек. Неподвижная жидкость. Пусть имеется некоторый сосуд, наполненный водой. Внешнее давление – . Сосуд располагается над условной плоскостью сравнения О - О (рис. 2.4). Поверхность воды в сосуде находится относительно плоскости сравнения на высоте z 0 . Возьмём в жидкости произвольную точку А, находящуюся на глубине h и на расстоянии z от плоскости О - О. Тогда полное гидростатическое давление p в точке А определяется по основному уравнению гидростатики: 5 Рис. 2.4. Схема к определению гидростатического напора , (2.1) где – внешнее давление, действующее на свободную поверхность жидкости, Па; – плотность жидкости, кг/м 3 ; g – ускорение свободного падения, м/с 2 Произведение есть избыточное давление (по отношению к ), или давление столба жидкости над точкой А. Если внешнее давление равно атмосферному, то избыточное давление называется манометрическим. Из рис.2.4 видно, что h = z 0 - z. Тогда (2.1) можно преобразовать: , . (2.2) В (2.2) величина называется пьезометрической высотой. При нулевом значении внешнего давления она соответствует высоте столба жидкости над данной точкой. Из последнего соотношения следует, что сумма пьезометрической и геометрической высот для любой точки неподвижной жидкости является величиной постоянной и определяется внешним давлением и положением поверхности жидкости. Данная сумма имеет свое название – гидростатический напор: H c = + z. Величина гидростатического напора выражается в метрах. Произведение mgH c , где m – масса какого-либо элемента жидкости, характеризует потенциальную энергию этого элемента, равную механической работе, которую он может совершить при переходе на плоскость сравнения. В соответствии с (2.2) потенциальная энергия для любых точек неподвижной жидкости одинакова. Жидкость в состоянии движения. Состояние жидкости, находящейся в движении, определяется давлениями и скоростями во всех точках потока. Картина скоростей в каждый данный момент времени и в пространстве называется полем скоростей, а картина давлений – полем давлений. Различают движение установившееся и неустановившееся. Если скорость и давление в каждой точке пространства, заполненного движущейся жидкостью, не изменяются во времени, движение называется установившимся, то есть скорость v и давление p являются только функциями координат: v = v(x,y,z), p = p(x,y,z). Установившееся движение может быть равномерным и неравномерным. Равномерное движение соответствует случаю, когда на рассматриваемом 6 участке потока сохраняются постоянными площадь поперечного сечения потока и его скорость v. Если данные условия не соблюдаются, то движение будет неравномерным. Для неустановившегося движения поля скоростей и давлений в каждой точке потока изменяются со временем t: v = v(x,y,z,t), p = p(x,y,z,t). Потоки жидкости часто характеризуют усредненными по сечению параметрами. При этом пользуются следующими понятиями: площадь живого сечения , м 2 , – это площадь поперечного сечения потока жидкости; расход потока Q, м 3 /с, – объём жидкости, протекающей через поперечное сечение потока в единицу времени; сток потока W, м 3 , – суммарный объём жидкости, прошедший через поперечное сечение потока за какое-либо время t (W =Q t ); средняя скорость потока v, м/с, определяется как v = Q/ Из определения средней скорости потока следует, что . Если поток жидкости не имеет дополнительных каналов притока или потерь, то расход жидкости в каждом его сечении постоянен, то есть .(2.3) Индексы 1 и 2 соответствуют номеру сечения потока. Уравнение (2.3) называется уравнением неразрывности потока и является первым основным уравнением гидродинамики. Из него следует, что , то есть средние скорости в поперечных сечениях обратно пропорциональны площадям этих сечений. Рис. 2.5. Схема потока жидкости и его характеристики в сечениях 1 и 2 Вторым основным уравнением гидродинамики является уравнение, устанавливающее зависимость между скоростью и давлением в различных сечениях потока жидкости. Рассмотрим поток идеальной жидкости в потенциальном поле Земли (рис. 2.5). Для идеальной жидкости диссипативные потери энергии при движении отсутствуют. В связи с этим полная механическая энергия какой-либо выделенной части жидкости потока, равная сумме потенциальной и кинетической энергий (Э = mgH c + mv 2 /2), в каждом сечении потока сохраняется: Э = mgH с1 + mv 1 2 /2 = mgH c2 + mv 2 2 /2. (2.4) Здесь m – масса выделенной части жидкости; g - ускорение свободного падения. Разделив выражение (2.4) на mg и учитывая определение H c , получим 7 Э/mg = . (2.5) Это уравнение носит название уравнения Бернулли. Здесь v 1 2 /2g и v 2 2 /2g - удельные кинетические энергии жидкости (скоростные напоры) в сечениях 1 и 2. Удельная энергия потока Э/mg (полная механическая энергия элемента жидкости потока весом 1 Н) имеет размерность длины (м), обозначается H g и называется гидродинамическим напором. В соответствии с (2.5) . (2.6) Из уравнения Бернулли следует, что гидродинамический напор в любом сечении потока жидкости постоянен. Это уравнение выражает для движущейся жидкости закон сохранения механической энергии и устанавливает важную зависимость между v, p и z. Уравнение Бернулли, записанное в форме (2.5), справедливо лишь для идеальной жидкости и при отсутствии потерь на трение. Для реальных потоков с учётом неравномерности распределения скоростей по площади живого сечения и потерь напора H g , связанных с работой сил трения, уравнение Бернулли записывается следующим образом: , (2.7) где – коэффициент Кориолиса (обычно =1,045 – 1,1); – величина потери гидродинамического напора на участке между сечениями 1 и 2. Разновидности уклонов. Для характеристики изменения гидродинамического напора и его составляющих вдоль потока жидкости на каком-либо участке 1-2 длиной l служат понятия о трёх разновидностях уклонов: геометрический уклон – характеризует геометрический уклон потока относительно плоскости сравнения; пьезометрический уклон – характеризует изменение давления вдоль потока; гидравлический уклон – характеризует величину изменения гидродинамического напора на единице длины потока. Понятия об уклонах широко используются в различных водохозяйственных и водноэнергетических задачах. 8 ГИДРОЭЛЕКТРОСТАНЦИИ (ГЭС) Для коммунальных хозяйств наиболее привлекательной среди возобновляемых источников энергии является электроэнергия, полученная за счет использования воды; её экономическая целесообразность была успешно доказана. Были построены ГЭС мощностью до 10 ГВт. Но если сравнивать оценку ученых относительно существующих в мире экономических ресурсов для достижения суммарной установленной мощности ГЭС в 3 000 ГВт, и цифру в 10 000 ГВт, характеризующую потребление энергии по всему миру, видно, что сделано еще довольно мало. В Европе, кстати, основной гидроэнергетический потенциал уже реализован: 98% потребляемой энергии в Норвегии вырабатывается за счет гидроэнергетики, а правительство Германии заявило, что в стране уже не существует больше мест для размещения ГЭС. Рассматривая мировое распространение гидроэнергетики можно отметить, что сегодня уже задействовано около 10% существующих гидроресурсов. Большим потенциалом для развития гидроэнергетики обладают страны Азии и Африки. Годовое мировое производство электроэнергии - 2200 млрд кВт·ч; это означает, что ГЭС работают на 40% своей мощности. Самый большой гидроэнергетический комплекс в мире находится на реке Парана между Парагваем и Бразилией. Он называется Дамба Итаипу, а суммарная мощность его 18 турбин составляет 12600 МВт. Использование энергии воды становится все более популярным во многих регионах мира. Например, в Китае и Индии ожидается резкий рост развития гидроэнергетики. В 1999 году Китай ввел в строй гидроэлектростанцию Эртан мощностью 3300 МВт, состоящую из шести турбин по 550 МВт каждая. Эртан - вторая по величине в Азии ГЭС и является крупнейшим производителем электроэнергии в Китае. |