Карбоновые кислоты. Карбоновые кислоты
Скачать 2.42 Mb.
|
Тема: «Карбоновые кислоты»План: 1. Определение. Классификация. 2. Химические свойства. 3. Салициловая кислота, фарм. препараты на её основе.1. Определение. Классификация.Карбоновые кислоты – это органические вещества, содержащие в своем составе карбоксильную группу (- COOH). Классификация карбоновых кислотI. По числу карбоксильных групп различают: монокарбоновые – содержат одну карбоксильную группу. Пример: гомологический ряд предельных одноосновных кислот CnH2n + 1COOH, n = 0, 1, 2, 3, 4 … HCOOH муравьиная (метановая) кислота (соли – формиаты) H3C – COOH уксусная (этановая) кислота (соли – ацетаты) H3C – CH2 – COOH пропионовая (пропановая) кислота (соли – пропионаты) H3C – CH2 – CH2 – COOH масляная (бутановая) кислота (соли – бутираты) H3C – CH2 – CH2 – CH2 – COOH валериановая (пентановая кислота) кислота (соли – валераты) H3C – CH2 – CH2 – CH2 – CH2 – COOH капроновая (гексановая) кислота (соли – гексаноаты) б) поликарбоновые – содержат в своем составе две и более карбоксильные группы. Пример: гомологический ряд предельных дикарбоновых кислот HOOC – CnH2n – COOH, n = 0, 1, 2, 3, 4 … HOOC – COOH щавелевая (этандиовая) кислота (соли – оксалаты), HOOC – CH2 – COOH малоновая (пропандиовая) кислота (соли – малонаты), HOOC – CH2 – CH2 – COOH янтарная (бутандиовая) кислота (соли – сукцинаты), HOOC – CH2 – CH2 – CH2 – COOH глутаровая (пентандиовая) кислота (соли – глутараты). малеиновая кислота (цис-бутендиовая кислота) Токсична, в природе не встречается. фумаровая кислота (транс-бутендиовая кислота) Продукт обмена углеводов в анаэробных условиях. Пример: непредельная дикарбоновая кислота бутендиовая кислота НООС-СН=СН-СООН II. В зависимости от наличия младших функциональных групп различают: a) гидроксикислоты COOH HO – C – H CH3 L (+) - молочная (2 – гидроксипропановая) кислота (соли – лактаты) Пример: L – молочная кислота D – молочная кислота COOH HO – C – H CH2 COOH L (-) –яблочная кислота (2- гидроксибутандиовая) кислота (соли – малаты) COOH CH2 H – C – OH CH3 D(+) – β-гидроксимасляная (2-гидроксибутановая) кислота, соли – β-гидроксибутираты COOH HO – C – CH2 – COOH СH2 – COOH лимонная (2-гидроксипропан- 1,2,3-трикарбоновая) кислота, соли – цитраты Гидроксикислоты являются, как правило, твёрдыми телами. Рацемическая молочная кислота может быть жидкой (т. пл. 18оС). Запахом гидроксикислоты почти не обладают. Гидроксикислоты имеют очень большое значение в биологической химии; их можно встретить во многих очень важных метаболических путях – цикле Кребса, гликолизе, пентозофосфатном цикле, β-окислении жирных кислот, биосинтезе жирных кислот и т.д. б) оксо- (кетоно-) кислоты – содержат в своем составе карбонильную группу. Пример: COOH C = O CH3 пировиноградная (2-оксопропановая) кислота (ПВК), соли – пируваты COOH C=O CH2 COOH щавелевоуксусная (2-оксобутандиовая) кислота (ЩУК), соли – соли щавелевоуксусной кислоты COOHCOOH CH2 C = O CH3 ацетоуксусная (3-оксобутановая) кислота, cоли – соли ацетоуксусной кислоты III. Особую группу составляют высшие (жирные) карбоновые кислоты (ВЖК); входят в состав липидов. Различают ВЖК: предельные. Пример: C15H31COOH – пальмитиновая кислота, C17H35COOH – стеариновая кислота, C23H47COOH – лигноцириновая кислота, C23H46 (OH)COOH – цереброновая кислота; б) непредельные.б) непредельные. Пример: C17H33COOH – олеиновая кислота (одна двойная связь), C17H31COOH – линолевая кислота (две двойных связи), C17H29COOH – линоленовая кислота (три двойных связи), C23H45COOH – нервоновая кислота (одна двойная связь). Номенклатура карбоновых кислот-метилмасляная кислота 2-метилбутановая кислота Физические свойстваКарбоновые кислоты в растворе находятся в виде димеров. Физические свойстваНизшие жирные кислоты представляют собой легкоподвижные жидкости, средние члены – масла, высшие – твёрдые кристаллические вещества. Рис. 1. Температуры плавления карбоновых кислот. Физические свойстваРис. 2. Температуры кипения в гомологическом ряду карбоновых кислот, альдегидов и спиртов. Физические свойстваПервые члены гомологического ряда карбоновых кислот обладают резким запахом, средние – прогорклым, неприятным, например, масляная кислота пахнет потом, высшие карбоновые кислоты вследствие нелетучести лишены запаха. Карбоновые кислоты, как правило, не ядовиты, однако приём внутрь концентрированных растворов (например, уксусной эссенции) вызывает тяжёлые ожоги. Нежелательно попадание этих растворов на кожу и тем более внутрь. Оδ- Сδ+ Оδ- Нδ+ .. Карбоксильная группа представляет собой плоскую p-π –сопряженную систему за счет взаимодействия pz–АО кислорода гидроксигруппы с π-связью карбонильной группы. Это приводит к повышению кислотных свойств карбоновых кислот по сравнению со спиртами. В карбоновых кислотах частичный положительный заряд на атоме углерода меньше, чем в альдегидах и кетонах, поэтому для карбоновых кислот менее характерны реакции нуклеофильного присоединения (AN) по сравнению с альдегидами и кетонами. В карбоновых кислотах выделяют следующие реакционные центры: Oδ- 1 R CH Cδ+ H OH 4 2 3 1 – основный, нуклеофильный центр, 2 – электрофильный центр, 3 – «OH» - кислотный центр, 4 – «CH» - кислотный центр. α Кислотные свойства Взаимодействие с нуклеофильными реагентами по карбонильному углероду Восстановление до CH2 Декарбоксилирование α-H реакции Химические свойства Химические свойстваI. Реакции диссоциации (в «OH»-кислотном центре): За счет p-π –сопряжения отрицательный заряд в ацилат-ионе делокализован между двумя атомами кислорода: Химические свойстваK = 2.14·10-4 K = 1.75·10-5 Химические свойстваII. Образование солей: а) С активными металлами: 2 CH3COOH + Mg → (CH3COO)2Mg + H2 б) С основными оксидами: 2 CH3COOH + CaO → (CH3COO)2Ca + H2O в) Со щелочами (реакция нейтрализации): CH3COOH + NaOH → CH3COONa + H2O г) С солями более слабых кислот: CH3COOH + NaHCO3 → CH3COONa + CO2 ↑+ H2O 2 CH3COOH + Na2CO3 → 2 CH3COONa + CO2 ↑+ H2O Эти реакции используются как качественные на карбоксильную группу (по выделению пузырьков CO2). Образование солей дикарбоновыми кислотами:гидрооксалат натрия оксалат натрия (кислая соль) (средняя соль) оксалат кальция Химические свойства Химические свойстваОколо 80% почечных камней образуется из оксалата кальция. Химические свойствамолочная кислота лактат кальция Образование солей гидроксикислотами: Лактат кальция используется в медицине как кальциевый препарат. Химические свойстваIII. Реакции галогенирования (в СН - кислотном центре): CH3 CH2 COOH + Br2 CH3 CH COOH + HBr Br пропионовая кислота α- бромпропионовая кислота IV. Реакции декарбоксилирования In vitro (в пробирке, т.е. вне живом организме реакции протекают при нагревании; in vivo, т.е. в живом организме с участием ферментов декарбоксилаз. а) in vitro: HOOC COOH HCOOH + CO2 to янтарная кислота ангидрид янтарной кислоты COOH COOHCOOH COOH CH2 CH2 CH2 CH2 CH2 CH3 COOH глутаровая кислота масляная кислота F -CO2 б) in vivo: V. Реакции этерификации или нуклеофильного замещения (SN)у sp2-гибридизованного атома углерода Пример: уксусная кислота этиловый спирт этилацетат вода VI. Межмолекулярная дегидратация с образованием ангидридов (при пропускании паров кислот над водоотнимающими средствами P2O5, H2SO4конц: “Ангидрид” (an – отрицающая частица, греч. udor – вода) означает “лишённый воды”. VII. Окисление карбоновых кислот В организме карбоновые кислоты окисляются в основном за счёт т.н. β-окисления. Кроме того in vivo встречается также α- и ω-окисление. In vitro некоторые аналогичные реакции β-окисления можно осуществить с помощью 3% перекиси водорода. -Окисление: Окисление дикарбоновых кислот in vivo: янтарная кислота фумаровая кислота VII. Реакции окисления гидроксикислот a) Окисление молочной кислоты COOH COOH HO C H C O CH3 CH3 молочная кислота + НАД+ - НАД · H, - H+ пировиноградная кислота β) Окисление яблочной кислоты COOH COOH HO C H C O CH2 CH2 COOH COOH яблочная кислота + НАД+ - НАД ·H, - H+ щавелевоуксусная кислота с) Окисление β-гидроксимасляной кислоты COOH COOH CH2 CH2 H C OH C O CH3 CH3 + НАД+ - НАД ·H, - H+ β –гидрокимасляная кислота ацетоуксусная кислота H3C C CH2 COOH + H2O 2 H3C COOH O Ацетоуксусная кислота подвергается гидролитическому расщеплению с образованием двух молекул уксусной кислоты. уксусная кислота Уксусная кислота, вовлекаясь в обменные процессы, окисляется до конечных продуктов CO2 и H2O. При патологии (сахарном диабете) идет декарбоксилирование уксусной кислоты. H3C C CH2 COOH H3C C CH3 + CO2 O O ацетон В крови больных накапливаются кетоновые тела: β-гидрокимасляная кислота, ацетоуксусная кислота, ацетон. F Специфические свойства винной кислоты – образование хелатных комплексов с ионами металлов. L-винная кислота D-винная кислота мезовинная кислота Салициловая кислота, фарм. препараты на её основе Салициловая кислота: (о-гидроксибензойная кислота) Обладает большей кислотностью, чем бензойная кислота, а также мета- и пара- изомеры. Это объясняется стабилизацией аниона за счет образования внутримолекулярной водородной связи: δ+ Салициловая кислота, фарм. препараты на её основе Салициловая кислота, фарм. препараты на её основе Салициловая кислота применяется в медицине в виде спиртовых растворов и мазей как антисептическое лекарственное средство. Метилсалицилат:Метилсалицилат: Используется как противовоспалительное, анальгетическое средство наружно (в виде мазей). Салициловая кислота, фарм. препараты на её основе Салицилат натрия:Салицилат натрия: Применяется в качестве анальгетического, противовоспалительного, жаропонижающего средства. Салициловая кислота, фарм. препараты на её основе Фенилсалицилат:Фенилсалицилат: салицилат хлорангидрид фенилсалицилат натрия салициловой кислоты Фенилсалицилат входит в состав фарм. препаратов. Салициловая кислота, фарм. препараты на её основе Ацетилсалициловая кислота (аспирин): Ацетилсалициловая кислота используется в качестве анальгетического, жаропонижающего средства. Салициловая кислота, фарм. препараты на её основе Салициловая кислота и её производные со свободной гидроксильной группой дают с раствором хлорида железа (III) фиолетовое окрашивание, характерное для фенолов, что используется в качественном анализе. Салициловая кислота, фарм. препараты на её основе САЛОЛ,салицилово-фениловый эфир, фенилсалицилат: Лекарственное вещество, обладающее дезинфицирующим свойством (применяется при заболеваниях кишечника) |