Главная страница
Навигация по странице:

  • Гормоны и их роль в регуляции различных систем организма.

  • Гормоны надпочечников

  • Список использованной литературы

  • Гормоны. Курсовая работа Направление подготовки 49. 03. 01 Физическая культура Факультет афк кононов Виктор Валерьевич


    Скачать 29.82 Kb.
    НазваниеКурсовая работа Направление подготовки 49. 03. 01 Физическая культура Факультет афк кононов Виктор Валерьевич
    АнкорГормоны
    Дата24.05.2022
    Размер29.82 Kb.
    Формат файлаdocx
    Имя файлаГормоны.docx
    ТипКурсовая
    #546137


    ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

    ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

    ФИЗИЧЕСКОЙ КУЛЬТУРЫ, СПОРТА И ЗДОРОВЬЯ

    ИМЕНИ П.Ф. ЛЕСГАФТА, САНКТ-ПЕТЕРБУРГ»

    Кафедра физиологии

    Дисциплина: Физиология человека

    Гормоны и их роль в регуляции различных систем организма. Значение гормонов

    надпочечника при напряженной мышечной деятельности.

    Курсовая работа

    Направление подготовки 49.03.01 – Физическая культура

    Факультет АФК
    Кононов Виктор Валерьевич

    Курс 2 Группа 213

    Заочная форма обучения

    Проверила Селиверстова В.В.

    Дата 17.05.2022

    Количество баллов ______

    Санкт-Петербург

    2022

    Содержание.

    Введение …………………………………………………………………………………….………………………3

    Гормоны и их роль в регуляции различных систем организма ....……………………4

    Гормоны надпочечников…………………………………………………………………………………….7

    Заключение…………………………………………………………………………………………………………12

    Список литературы………………………………………………………………………………………………14

    Введение

    Все ткани животного организма обладают внутри секреторной или эндокринной функцией. В процессе жизнедеятельности они образуют промежуточные и конечные продукты обмена, которые поступают в межклеточную жидкость, лимфу, кровь и оказывают влияние на различные физиологические процессы.

    Все продукты жизнедеятельности, поступившие в кровь, разносятся ею по организму и регулируют процессы, протекающие в различных органах. Такой путь регуляции получил название гуморального, от лат. слова «гумор» - жидкость. К веществам, оказывающим регулирующее влияние, относят продукты эндогенного происхождения, вырабатываемые в самом организме - гормоны, нейросекреты, углекислота и другие метаболиты, а также вещества, поступающие в кровь извне - витамины, макро- и микроэлементы, растительные эстрогены, ауксины и фитонциды.

    Наиболее важную и активную регулирующую функцию выполняют железы внутренней секреции или отдельные клетки внутренних органов, которые синтезируют биологически активные вещества. К таким эндокринным структурам относят нейросекреторные ядра гипоталамуса, ядра продолговатого и среднего мозга, а также железы внутренней секреции - гипофиз, эпифиз, щитовидные и околощитовидные, надпочечные и другие железы, эндокринные клетки поджелудочной и половых желез, тимуса, почек, печени и органов пищеварения. Все они объединяются в гипоталамо-гипофизарную, гастро-энтеропанкреатическую и другие системы.

    Понятие об эндокринной секреции впервые было введено К. Бернаром, который установил способность клеток печени выделять глюкозу в кровь. Название «эндокринный» происходит от греческого слова «эндо» - глубинный и «крино» - выделяю, то есть вещества, выделяемые во внутрь.

    Таким образом, все многообразные гуморальные факторы обеспечивают функциональную взаимосвязь органов, приспосабливая их под постоянным контролем нервной системы, к беспрерывно происходящим суточным и сезонным колебаниям естественного и искусственного состояния среды обитания животных: освещенности, температуры, влажности, давления, состояния, питания и т.д.

    Гормоны и их роль в регуляции различных систем организма.

    Гормональная регуляция, регуляция жизнедеятельности организма животных и человека, осуществляемая при участии поступающих в кровь гормонов; одна из систем саморегуляции функций, тесно связанная с нервной и гуморальной системами регуляции и координации функций. Одним из важнейших биологических процессов является регуляция секреции гормонов, обеспечивающая их образование, выделение из клеток и поступление в циркуляцию в количестве, необходимом для поддержания процессов метаболизма и других функций тканей и органов. Составными частями этой регулирующей системы являются гуморальные факторы, к которым надо отнести продукты метаболизма и гормоны, нейро-гормональные и нервные факторы.

    Можно привести ряд примеров влияния продуктов метаболизма на различные этапы секреции гормонов. Так, примером гуморальных регуляций является выделение инсулина из бета-клеток островков поджелудочной железы во внеклеточное пространство и циркуляцию, при повышении уровня гликемии, тимуляторами этой секреции являются также аминокислоты, оординированно с процессом выделения инсулина происходит повышение его биосинтеза. Снижение уровня сахара крови способствует понижению секреции инсулина, повышению секреции и поступлению в циркуляцию его гормональных антагонистов ― глюкагона, вырабатываемого альфа-клетками островков поджелудочной железы, гормона роста, гидрокортизона, адреналина и медиатора норадреналина. Это строго координированное взаимодействие ряда гормонов в итоге сложных метаболических процессов обеспечивает сохранение физиологического уровня сахара крови и метаболизма глюкозы. Кроме регуляции секреции гормонов в ответ на повышенный к ним запрос, существенное значение имеет высвобождение гормонов из их связи с белками. Изучены специфические белки, связывающие в плазме крови инсулин, тироксин, гормон роста, прогестерон, гидрокортизон, кортикостероп и другие гормоны. Гормоны и протеины связаны нековалентными связями, обладающими сравнительно низкой энергией, поэтому эти комплексы легко разрушаются, освобождая гормон. Комплексирование с белками дает возможность сохранять часть гормона в неактивной форме. Кроме того, эта связь защищает гормон от действия химических и энзиматических факторов. К представлению, что связанные с белками гормоны являются одной из транспортных форм в циркуляции и обеспечивают их резервирование, добавились другие факты: важным компонентом биологического значения этих комплексов является возможность быстрого высвобождения из них свободных, т. е. активных, гормонов.

    Регуляция секреции гормонов осуществляется несколькими связанными между собой механизмами. Их можно проиллюстрировать на примере кортизола, основного глюкокортикоидного гормона надпочечников. Его продукция регулируется по механизму обратной связи, который действует на уровне гипоталамуса. Когда в крови снижается уровень кортизола, гипоталамус секретирует кортиколиберин – фактор, стимулирующий секрецию гипофизом кортикотропина (АКТГ). Повышение уровня АКТГ, в свою очередь, стимулирует секрецию кортизола в надпочечниках, и в результате содержание кортизола в крови возрастает. Повышенный уровень кортизола подавляет затем по механизму обратной связи выделение кортиколиберина – и содержание кортизола в крови снова снижается. Секреция кортизола регулируется не только механизмом обратной связи. Так, например, стресс вызывает освобождение кортиколиберина, а соответственно и всю серию реакций, повышающих секрецию кортизола. Кроме того, секреция кортизола подчиняется суточному ритму; она очень высока при пробуждении, но постепенно снижается до минимального уровня во время сна. К механизмам контроля относится также скорость метаболизма гормона и утраты им активности. Аналогичные системы регуляции действуют и в отношении других гормонов. Самое важное значение имеет в регуляции секреции гормонов центральная нервная система. Одной из важнейщих областей ЦНС, координирующей и контролирующей функции эндокринных желез, является гипоталамус, где локализуются нейросекреторные ядра и центры, принимающие участие в регуляции синтеза и секреции гормонов аденогипофиза. Гипоталамо-гипофизарная регуляция осуществляется механизмами, функционирующими по принципу обратной связи, в которых четко выделяются различные уровни взаимодействия Под “длинной” цепью обратной связи подразумевается взаимодействие периферической эндокринной железы с гипофизарными и гипоталамическими центрами (не исключено, что и с супрагипоталамическими и другими областями ЦНС) посредством влияния на указанные центры изменяющейся концентрации гормонов в циркулирующей крови. Под “короткой” цепью обратной связи понимают такое взаимодействие, когда повышение гипофизарного тропного гормона (например, АКТГ) модулирует и модифицирует секрецию и высвобождение гипофизотропного гормона (в данном случае кортиколиберина). “Ультракороткая” цепь обратной связи – вид взаимодействия в пределах гипоталамуса, когда высвобождение одного гипофизотропного гормона влияет на процессы секреции и высвобождения другого гипофизотропного гормона. Этот вид обратной связи имеет место в любой эндокринной железе. Так, высвобождение окситоцина или вазопрессина через аксоны этих нейронов и посредством межклеточных взаимодействий (от клетки к клетке) модифицирует активность нейронов, продуцирующих эти гормоны. Другой пример, высвобождение пролактина и его диффузия в межваскулярные пространства приводит к влиянию на соседние лактотрофы с последующим угнетением секреции пролактина. “Длинная” и “короткая” цепи обратной связи функционируют как системы “закрытого” типа, т.е. являются саморегулирующими системами. Однако они отвечают на внутренние и внешние сигналы, изменяя на короткое время принцип саморегуляции (например, при стрессе и др.). Наряду с этим на указанные системы влияют механизмы, поддерживающие биологический циркадный ритм, связанный со сменой дня и ночи. Циркадный ритм представляет собой компонент системы, регулирующий гомеостаз организма и позволяющий адаптироваться к изменяющимся условиям внешней среды. Информация о ритме день-ночь передается в ЦНС с сетчатки глаза на супрахиазматические ядра, которые вместе с эпифизом образуют центральный циркадный механизм – ”биологические часы”. Помимо механизма день-ночь, в деятельности этих “часов” принимают участие другие регуляторы (изменение температуры тела, состояние отдыха, сна и др.).

    Гормоны надпочечников

    Физиологическая деятельность желез сложна. Это настоящая фабрика гормонов. Ее продукция насчитывает около десяти наименований. Адреналин вырабатывают клетки мозгового вещества надпочечников, которые за способность избирательно окрашиваться солями хрома называют хромафинными. Подобные клетки имеются не только в надпочечниках: они как бы вмонтированы в стенки кровеносных сосудов, сопутствуют нервным узлам (ганглиям) симпатического отдела вегетативной нервной системы.

    Адреналин синтезируется только в надпочечниках; норадреналин и дофамин образуются также в параганглиях и многочисленных нейронах симпатической нервной системы.

    Биосинтез адреналина осуществляется из фенилаланина: предшественником норадреналина является дофамин (он синтезируется из тирозина, который, в свою очередь -- производное фенилаланина), который с помощью фермента дофамин-бета-гидроксилазы гидроксилируется (присоединяет OH-группу) до норадреналина в везикулах синаптических окончаний.

    При этом норадреналин тормозит фермент, превращающий тирозин предшественник дофамина, благодаря чему осуществляется саморегуляция его синтеза.

    Адреналин (эпинефрин) (L-1(3,4-Диоксифенил)-2-метиламиноэтанол) -- основной гормон мозгового вещества надпочечников, а также нейромедиатор.

    Норадреналин, норэпинефрин, L-1-(3,4-Диоксифенил)-2-аминоэтанол -- гормон мозгового вещества надпочечников и нейромедиатор. Относится к биогенным аминам, к группе катехоламинов.

    А. Строение гормонов (химическая природа)

    В настоящее время считают, что из перечисленных выше кортикостероидов надпочечники в основном секретируют 17- оксикортикостерон, кортикостерон и альдостерон. Все они имеют тетрациклическую структуру циклопентанпергидрофенантрена. Структурная основа такого циклического типа соединения характерна и для многих других соединений типа стероидов (холестерин, желчные кислоты, провитамин Д, половые гормоны). Многие из таких стероидов содержат 21 атом углерода и могут рассматриваться как производные прегнана или его изомера - аллопрегнана.

    Стероиды коры надпочечников различаются наличием или отсутствием карбоксильных и гидроксильных групп, а также двойных связей между четвертым и пятым атомами углерода.

    Кортикостероиды коры надпочечников разделяют на две группы:

    Глюкокортикоиды и минералокортикоиды

    Глюкокортикоиды контролируют многие стороны обмена углеводов, липидов и нуклеиновых кислот. Наибольшей активностью обладают такие представители этой группы, как кортизол и кортикостерон.

    Минералокортикоиды оказывают существенное влияние на водно-солевой обмен, причем наиболее активным из них является альдостерон.

    Катехоламины - адреналин, изопреналин, битолтерол и изоэтарин - содержат в своем составе бензольное кольцо с двумя гидроксильными группами в положениях 3 и 4 или 4 и 5 и этаноламиновой группой (табл. 4.5). Избирательность действия на бета1-адренорецепторы или бета2-адренорецепторы определяется наличием радикалов, замещающих водород гидроксильных и этаноламиновой групп.

    По химическому строению норадреналин отличается от него отсутствием метильной группы у атома азота аминогруппы боковой цепи. Его действие, как гормона, во многом синергично с действием адреналина.

    Б. Биологическая роль гормонов надпочечников

    В состоянии покоя клетки мозгового слоя надпочечников постоянно секретируют небольшие количества адреналина и, вероятно, норадреналина.

    Высвобожденный адреналин распространяется повсюду с током крови. Адреналин адсорбируется на определенных рецепторах на поверхности клеток в различных тканях тела, уменьшает отток крови к внутренним органам, увеличивает приток крови к скелетным мышцам, увеличивает уровень глюкозы в крови, заставляет печень и клетки мышц расщеплять гликоген и вырабатывать глюкозу.

    Норадреналин используется для поддержания артериального давления при артериальной гипотонии. Его действие обусловлено главным образом сужением артериол, хотя он оказывает и стимулирующее влияние на сердце.

    Норадреналин в меньшей степени повышает потребность миокарда и других тканей в кислороде, чем адреналин.

    Норадреналин принимает участие в регуляции артериального давления и периферического сосудистого сопротивления. Например, при переходе из лежачего положения в стоячее или сидячее уровень норадреналина в плазме крови в норме уже через минуту возрастает в несколько раз.

    3. Механизм действия гормонов надпочечников

    Глюкокортикоиды стимулируют катаболические процессы в организме (в мыщечной и жировой тканях). Новосинтезированные гормоны быстро секретируются в кровь и связываются со специфическим белком - транскортином. Образованный макромолекулярный комплекс переносится к клеткам - мишеням, где происходит его диссоциация и реализация действия гормонов.

    Глюкокортикоиды усиливают распад белков, повышают содержание аминокислот в крови и аминного азота в моче. Данные гормоны ингибируют синтез нуклеиновых кислот во всех тканях, кроме печени. Их действие на углеводный обмен проявляются прежде всего в увеличении глюкозы в крови за счет активации глюконеогенеза печени. В липидном обмене глюкокортикоиды стимулируют интенсификацию липолиза а также ингибируют синтез жирных кислот в печени.

    Минералокортикоиды воздействуя на почки регулируют водно-солевой обмен в организме.

    При выбросе адреналина происходит ускорение сердцебиения, повышение пульса и кровяного давления, расширение зениц, усиление распада гликогена, которое сопровождается ростом количества сахара в плазме крови, расширяются бронхи, сужение вен и артерий кожи, торможение секреций и движений пищеварительного тракта. Такие изменения происходят во время эмоциональных переживаний.

    Секреция адреналина резко повышается при стрессовых состояниях, пограничных ситуациях, ощущении опасности, при тревоге, страхе, при травмах, ожогах и шоковых состояниях. Действие адреналина связано с влиянием на б- и в-адренорецепторы и во многом совпадает с эффектами возбуждения симпатических нервных волокон. Он вызывает сужение сосудов органов брюшной полости, кожи и слизистых оболочек; в меньшей степени сужает сосуды скелетной мускулатуры. Артериальное давление под действием адреналина повышается. Однако прессорный эффект адреналина выражен менее, чем у норадреналина в связи с возбуждением не только б1 и б2-адренорецепторов, но и в2-адренорецепторов сосудов. Изменения сердечной деятельности носят сложный характер: стимулируя в1 адренорецепторы сердца, адреналин способствует значительному усилению и учащению сердечных сокращений, облегчению атриовентрикулярной проводимости, повышению автоматизма сердечной мышцы, что может привести к возникновению аритмий. Однако из-за повышения артериального давления происходит возбуждение центра блуждающих нервов, оказывающих на сердце тормозящее влияние, может возникнуть преходящая рефлекторная брадикардия.

    Уровень норадреналина в крови повышается при стрессовых состояниях, шоке, травмах, кровопотерях, ожогах, при тревоге, страхе, нервном напряжении.

    Норадреналин вызывает увеличение сердечного выброса. Вследствие повышения артериального давления возрастает перфузионное давление в коронарных и мозговых артериях. Вместе с тем, значительно возрастает периферическое сосудистое сопротивление и центральное венозное давление.

    У человека гипофункция надпочечных желез приводит к тяжелому заболеванию - так называемой бронзовой, или аддисоновой, болезни. Оно характеризуется похуданием, быстрой утомляемостью, мышечной слабостью, человек не может производить физическую работу, появляется бронзовая окраска кожи.

    4. Применение гормонов

    В наше время адреналин входит в арсенал лекарственных препаратов для неотложной помощи. Адреналин - один из самых активных биологических стимуляторов человеческого организма. Адреналин и норадреналин мобилизуют все наличные ресурсы организма на борьбу, с чем связано их применение в спортивной практике. Введение малых доз катехоламинов (строго под наблюдением врача) способно восстановить истощенные резервы катехоламинов центральной нервной системы (ЦНС) и повысить работоспособность как общую, так и спортивную. Восстановление резервов ЦНС без рациональной лекарственной терапии невозможно. Более того, современные тренировочные нагрузки большого спорта столь велики, что сами по себе являются серьезным истощающим фактором.

    Гормоны могут применяться и как агенты, нейтрализующие действие других медикаментозных средств; при этом исходят из того, что, например, глюкокортикоиды стимулируют катаболические процессы, а андрогены - анаболические. Поэтому на фоне длительного курса глюкокортикоидной терапии (скажем, в случае ревматоидного артрита) нередко дополнительно назначают анаболические средства для снижения или нейтрализации ее катаболического действия.

    Гормоны используются и в диагностических целях. Например, при исследовании функции коры надпочечников прибегают к ее стимуляции, вводя пациенту АКТГ, а ответ оценивают по содержанию кортикостероидов в моче или плазме.

    Заключение

    Гормоны обладают весьма высокой биологической активностью. Они имеют очень сложную химическую структуру, механизмы действия и огромную значимость в обмене веществ. Одно нарушение функции некоторых эндокринных желез может оказывать влияние, как на функцию других желез, так и на нервную систему. В связи с такой значимостью, в медицине существует терапевтическое использование гормонов. Гормоны использовались первоначально в случаях недостаточности какой-либо из желез внутренней секреции для замещения или восполнения возникшего гормонального дефицита. Первым эффективным гормональным препаратом был экстракт щитовидной железы овцы, примененный в 1891 английским врачом Г.Марри для лечения микседемы. На сегодняшний день гормональная терапия способна восполнить недостаточную секрецию практически любой эндокринной железы; прекрасные результаты дает и заместительная терапия, проводимая после удаления той или иной железы. Гормоны могут использоваться также для стимуляции работы желез.

    Кора надпочечников человека синтезируется 3 основных класса стероидных гормонов. Которые обладают широким спектром физиологических функций. Эти гормоны образуются в различных слоях надпочечников из холестерола липопротеинов низкой плотности или ацетил коэнзима А, или эфиров холистерина из внутриклеточных депо. В клубочковых слое коры надпочечников синтезируются гормоны, участвующие в регуляции обмена натрия и воды, пучковая и сетчатые зоны секретируют глюкокортикоиды и андрогены. Спектр и количество гормонов, синтезируемых корой надпочечников и половыми железами, различаются и зависят от активности определенных ферментных систем стероидогенеза, например, ферменты 11 b-гидроксилаза и 21-гидроксилаза присутствуют только в надпочечниках, синтезируя стероиды, специфичные для надпочечников.

    Список использованной литературы

    1. Голиков А.Н.. Физиология с/х животных, 1980

    2. Костин А.П., Мешряков Ф.А., Сысоев А.А.. Физиология с/х животных,

    3. Физиология и этология животных, Лысов В.Ф., Ипполитова Т.В., Максимов В.И., Шевелев Н.С., Колос, 2004.

    4. К.Вилли,В.Детье. Биология, Издательство МИР, Москва,1975.

    5. Биохимия: В.П.Комов, В.Н. Шведова, М. «Дрофа», 2004

    6. Большая медицинская энциклопедия, 2012

    7. Малая энциклопедия внутренних органов, 1990

    8. «Надпочечники», Эгарт Ф.М., Москва, 1982

    9. «Надпочечники - железы внутренней секреции», Лебедев В.П., Казань, 1979.

    10. Афиногенова С.А., Булатов А.А., Биохимия гормонов и гормональной регуляции, М.Мир , 1993. – 384с.

    11. Кононский А.И., Биохимия животных, М.Молодая гвардия, 1992. -526с.

    12. Марри Р., Греннер Д., Мейес П., Биохимия человека, М.Мир,1993. – 384с.

    13. Розен В.Б., Основы эндокринологии, М.Высшая школа, 1984. – 336с. 5. Большая медицинская энциклопедия.

    14. Колб В.Г., Камышников В.С. Клиническая биохимия. – Минск: Беларусь, 1976. – 311 с.

    15. Држевецкая И.А. Эндокринная система растущего организма. – М.: Высш. шк.,1987.


    написать администратору сайта