Главная страница
Навигация по странице:

  • Основная идея

  • Моделирование случайных величин с заданными распределениями

  • «псевдослучайными»

  • Белоцерковский О.М., Хлопков Ю.И

  • Эдиев Д.М.

  • Методы МонтеКарло


    Скачать 313.5 Kb.
    НазваниеМетоды МонтеКарло
    Дата30.03.2021
    Размер313.5 Kb.
    Формат файлаppt
    Имя файла88042.ppt
    ТипДокументы
    #189484

    Методы Монте-Карло


    Выполнила: студентка 734 гр.
    Авдеюк Ирина
    Руководитель: доц. Сороко Е.Л.
    Москва 2011


    Методы Монте-Карло – это численные методы решения математических задач (систем алгебраических, дифференциальных, интегральных уравнений) и прямое статистическое моделирование (физических, химических, биологических, экономических, социальных процессов) при помощи получения и преобразования случайных чисел.


    Первое упоминание в 1873 Холлом при организации стохастического процесса экспериментального определения числа путём бросания иглы на лист линованной бумаги.
    1940-е годы – Дж. Фон Нейман – моделирование траекторий нейтронов
    1949 год – систематизация Н.Метрополисом и С.Уламом, решение линейных интегральных уравнений (статья «Метод Монте-Карло»)


    В 1950-х годах метод использовался для расчётов при разработке водородной бомбы. Основные заслуги в развитии метода в это время принадлежат сотрудникам лабораторий ВВС США.
    В 1970-х годах в новой области математики — теории вычислительной сложности было показано, что существует класс задач, сложность (количество вычислений, необходимых для получения точного ответа) которых растёт с размерностью задачи экспоненциально.
    В настоящее время основные усилия исследователей направлены на создание эффективных Монте-Карло алгоритмов различных физических, химических и социальных процессов для параллельных вычислительных систем.


    Основная идея методов состоит в создании определенной последовательности псевдослучайных чисел, моделирующих тот или иной эффект.
    Для решения задачи по методам Монте-Карло прежде всего строят вероятностную модель, представляют искомую величину, например многомерный интеграл, в виде математического ожидания функционала от случайного процесса, который затем моделируется на компьютере. В результате проведения вычислительного эксперимента получают нужную выборку и результаты всех испытаний усредняют.


    Моделирование случайных величин с заданными распределениями осуществляется путём преобразования одного или нескольких независимых значений случайного числа a, распределённого равномерно в интервале (0,1). Последовательности «выборочных» значений a обычно получают на компьютере с помощью теоретико-числовых алгоритмов. Такие числа называются «псевдослучайными»
    Генератор псевдослучайных чисел (ГПСЧ, PRNG) — алгоритм, генерирующий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению.


    Общая схема метода Монте-Карло основана на Центральной предельной теореме теории вероятности, утверждающей, что случайная величина , равная сумме большого количества N произвольных случайных величин с одинаковыми математическими ожиданиями m и дисперсиями , всегда распределена по нормальному закону с математическим ожиданием и дисперсией .


    Общие свойства методов:
    абсолютная сходимость к решению,
    тяжёлая зависимость погрешности от числа испытаний (для уменьшения погрешности на порядок, необходимо увеличить количество испытаний на два порядка);
    основным методом уменьшения погрешности является максимальное уменьшение дисперсии, другими словами, максимально приблизить плотность вероятности p(x) случайной величины к математической формулировке задачи или физике моделируемого явления;
    простая структура вычислительного алгоритма ( N раз повторяющиеся однотипные вычисления реализаций случайной величины);
    конструкция случайной величины может основываться на физической природе процесса и не требовать обязательной, как в регулярных методах, формулировки уравнения, что для современных проблем становится всё более актуальным.


    В демографии все большее распространение получают имитационные модели, представляющие собой стохастические дискретные микромодели, в которых изменение демографического состояния индивида или другие демографические единицы моделируется методом статистических испытаний - методом Монте-Карло
    Имитационные модели позволяют лучше учесть причинно-следственной связи, возникающие в демографическом процессе, включить в рассмотрение большое число поведенческих факторов, которые нельзя учесть в макромоделях
    Имитационные модели призваны решать ту же задачу, что и поиск значений демометрических функций - описать общую закономерность изменения интенсивности демографических событий с возрастом


    Имитационная модель брачной рождаемости выделяет, например, такие события, как вступление в брак (с этого начинается функционирование модели), зачатие, с учётом его желательности для семьи и используемой контрацепции, вынашивание, рождение живого или мёртвого ребёнка, период послеродовой стерильности и т. д.
    Вероятности и их распределения могут рассматриваться как функции социальных, экономических и других переменных. После описания модели жизнь индивида или семьи прослеживается от начала до конца, причём событие принимается наступившим или не наступившим в зависимости от значений случайных чисел, вырабатываемых с помощью спец. датчика на каждом шагу имитации. Время в имитационных моделях меняется, как правило, с небольшим шагом - порядка одного месяца, а для получения содержательного результата надо проследить жизнь тысяч или десятков тысяч индивидов.

    Список литературы


    Белоцерковский О.М., Хлопков Ю.И. «Методы Монте-Карло в прикладной математике и вычислительной аэродинамике»
    Кирьянов Д.В. , Кирьянова Е.Н. «Вычислительная физика» – М.: Полибук Мультимедиа, 2006. – 352 с.
    Эдиев Д.М. “Концепция демографического потенциала и ее приложения”, Матем. моделирование, 15:12 (2003), 37–74
    www.wikipedia.org



    написать администратору сайта