Главная страница
Навигация по странице:

  • многозначной

  • многозадачная логика. Многозначная логика. Многозначная логика тип формальной логики


    Скачать 14.57 Kb.
    НазваниеМногозначная логика тип формальной логики
    Анкормногозадачная логика
    Дата26.10.2022
    Размер14.57 Kb.
    Формат файлаdocx
    Имя файлаМногозначная логика.docx
    ТипДокументы
    #756779

    Многозначная логика.

    Многозна́чная ло́гика — тип формальной логики, в которой допускается более двух истинностных значений для высказываний. Первую систему многозначной логики предложил польский философ Ян Лукасевич в 1920 году.

    В классической двузначной логике выражения при интерпретации принимают только два значения — «истинно» и «ложно», в М.л. рассматриваются и др. значения, напр. «неопределенно», «возможно», «бессмысленно» и т.п. В зависимости от множества истинностных значений различают конечнозначные и бесконечнозначные логики.

    Проблема содержательно ясной интерпретации многозначных систем — наиболее сложная и спорная в М.л.

    Об этом выразительно говорит, в частности, обилие интерпретаций, предложенных для самой старой из этих систем — трехзначной логики Я. Лукасе-вича. В соответствии с одной из ее интерпретаций высказывания должны делиться не просто на истинные и ложные, а на истинные, ложные и парадоксальные. Значение «парадоксально» приписывается высказываниям типа «Данное утверждение является ложным», т.е. тем высказываниям, из допущения истинности которых вытекает их ложность, а из допущения ложности — истинность.

    раздел логики, в котором множество истинностных значений содержит более чем два элемента. Если в классич. двузначной логике предложения при интерпретации принимают только два значения — «истинно» и «ложно», то в М. л. рассматриваются и др. значения (напр., «бессмысленно», «неопределённо» и т. п.). Иногда под М. л. понимают логику, не содержащую исключённого третьего принципа и не имеющую модальных операторов. Как и двузначная логика, М. л. имеет два раздела: логику высказываний и логику предикатов. В зависимости от мощности множества истинностных значений различают конечномногозначные логики (напр., n-значные логики Я. Лу-касевича и n-значные логики Д. А.Бочвара) и бесконечномногозначные логики (напр., бесконечнозначная логика Лукасевича и интуиционистская логика). Семантика М. л. изучается как в виде истинностных таблиц, так и в алгебраич. форме. К алгебраич. аспектам М. л. относится изучение функциональных свойств этих логик (в частности, проблема функциональной полноты).

    М. л. находит применение в теории автоматич. устройств, в исследовании проблем т. н. искусств. интеллекта, в теоретич. программировании, а также используется для формализации высказываний, истинностные значения которых зависят он контекста.


    написать администратору сайта