Главная страница
Навигация по странице:

  • «МОСКОВСКИЙ МЕЖДУНАРОДНЫЙ УНИВЕРСИТЕТ»

  • ВЫПОЛНЕНИЕ ПРАКТИЧЕСКИХ ЗАДАНИЙ ПО ДИСЦИПЛИНЕ НЕЙРОФИЗИОЛОГИЯ

  • 5.Подпишите основные части нейрона и их функции

  • Практическое занятие 2 по теме № 11. Тема 11. Физиология отдельных структур головного мозга. 2. Подпишите доли коры и их основные функции.

  • 5. Подпишите структуры, относящиеся к промежуточному мозгу и стволу мозга и опишите их основные функции

  • психология. нейрофизиология. Нейрофизиология


    Скачать 0.66 Mb.
    НазваниеНейрофизиология
    Анкорпсихология
    Дата28.05.2022
    Размер0.66 Mb.
    Формат файлаdocx
    Имя файланейрофизиология.docx
    ТипДокументы
    #554139


    Автономная некоммерческая организация высшего образования

    «МОСКОВСКИЙ МЕЖДУНАРОДНЫЙ УНИВЕРСИТЕТ»


    Кафедра психологии
    Форма обучения: заочная



    ВЫПОЛНЕНИЕ

    ПРАКТИЧЕСКИХ ЗАДАНИЙ

    ПО ДИСЦИПЛИНЕ

    НЕЙРОФИЗИОЛОГИЯ

    Группа То20П171

    Студент Половина А.Е.


    МОСКВА 2022


    Практическое занятие 1 по теме № 3.

    4.Сколько основных функций у нейроглии?


    Нейроглия выполняет опорную, регуляторную, трофическую, секреторную, разграничительную (шванновские клетки), защитную функции, функцию обучения нейронов, играет важную роль в процессах памяти.


    Иллюстрация четырёх типов глиальных клеток, находящихся в ЦНС: эпендимный слой (светло-розовый), астроциты (зелёный), клетки микроглии (тёмно-коричневый), олигодендроциты (голубой).
    5.Подпишите основные части нейрона и их функции:
    Строение и функции нейрона

    Нейрон — структурно-функциональная единица нервной системы, он обеспечивает работу всей системы, принимая и анализируя поступающую информацию и формируя обобщенный ответ, который в виде импульсов передается другой клетке по отросткам. Число нейронов, образующих нервную систему человека, достигает 10“.

    Строение нейрона.

    Нейрон состоит из тела неправильной формы (сомы) и отростков. Один отросток — аксон — более толстый и длинный, разветвленный на конце, другие (обычно их несколько), дендриты, — разветвленные подобно кроне дерева короткие отростки. Нейроны отличаются по количеству и расположению дендритов (рис. 4.5). В центре сомы нейронов находится одно довольно крупное округлое ядро с 1—3 крупными ядрышками (рис. 4.6).

    Усиление функциональной активности нейронов обычно сопровождается увеличением объема ядра и количества ядрышек. В стареющих нейронах ядро становится более плотным, уменьшается в размерах. Нейроны взрослого человека не способны к делению.

    Нейроны имеют специализированную плазматическую мембрану, проводящую импульсы. В цитоплазме нейрона хорошо развита эндоплазматическая сеть, объем которой может меняться в зависимости от функциональной активности клетки. Это позволяет поддерживать необходимый уровень синтеза белка. В цитоплазме много митохондрий, элементов аппарата Гольджи, лизосом, в нейроэндокринных клетках можно видеть гранулы секрета (см. рис. 4.6). В нейронах име-



    Рис. 4.5. Виды нейронов:

    а — униполярный: б — биполярный: в — псевдоуниполярный; г—е — мультиполярные



    Рис. 4.6. Строение нейрона:

    а — схема; 6 — электронная микроскопия; в — нейрон в культуре ткани (электронная сканирующая микроскопия)

    ются также клеточный центр, микротрубочки и микрофила- менты — нейрофибриллы. Последние имеют вид сети в теле нейрона, а в отростках они ориентированы вдоль. Цитоплазма содержит также пигментные вещества, от которых зависит цветовой оттенок нейрона. Большинство из них имеет серый цвет, нейроэндокринные клетки отличаются светлой окраской. Нейроны с черным пигментом образуют черную субстанцию в среднем мозге. Небольшое количество черного пигмента в нейронах придает области их локализации голубоватый цвет (голубое пятно моста). В старости в нейронах накапливается пигмент желтого или коричневого цвета, при этом снижается его функциональная активность.

    Нейроны разных областей мозга различаются по форме и степени ветвления дендритов (рис. 4.7).

    Сома нейрона и дендриты не имеют миелиновой оболочки, поэтому в массе мозга они имеют серый цвет и образуют серое вещество. Аксоны, покрытые миелиновой оболочкой, образуют белое вещество мозга — это скопления волокон проводящих путей. Миелиновая оболочка аксона начинается



    Рис. 4.7. Разнообразие нейронов головного мозга

    на некотором расстоянии от сомы; «оголенный» участок аксона, который является как бы коротким продолжением тела нейрона, называется аксонным холмиком. Миелиновая оболочка не сплошная, через определенные интервалы она прерывается — эти места называются перехватами Ранвье (рис. 4.8).

    Конечные разветвления аксона вблизи клетки, к которой он подходит, имеют особые контактные образования, называемые синапсами. Они предназначены для передачи сигнала от одной клетки к другой. В пределах ЦНС синаптические окончания аксона расположены на дендритах и в меньшей



    Рис. 4.8. Аксон, покрытый миелиновой оболочкой:

    а — схема; б — электронная сканирующая микроскопия степени — на соме следующего нейрона. На дендритах для увеличения контактной поверхности образуются выпячивания мембраны — шишки; их число зависит от активности нейрона: чем больше связей образует нейрон, тем более развиты у него шипики. Особенно богаты шиииками нейроны коры больших полушарий и мозжечка.

    Размеры аксонов и дендритов, а также характер и степень их ветвления в значительной степени варьируют, что непосредственно связано со спецификой выполняемых нейронами функций. Так, длинные аксоны имеются у двигательных нейронов (мотонейронов) спинного мозга, передающих сигналы к скелетным мышцам, и у пирамидных клеток коры больших полушарий, посылающих команды мотонейронам спинного мозга при выполнении тонких произвольных движений, например, пальцев рук.

    Для отростков нейронов характерно явление аксонного транспорта (аксотока) — продвижения цитоплазмы в направлении от тела клетки к окончанию аксона и обратно (рис. 4.9). Скорость тока различна: медленно (1—3 мм/сут- ки) из тела нейрона перемещаются белки, в частности ферменты, необходимые для синтеза медиаторов в окончаниях аксонов; быстрее (5—10 мм/ч) переносятся компоненты, участвующие в синаптической передаче (см. ниже). Скорость перемещения веществ по дендритам — 3 мм/ч. Некоторые вещества переносятся ретроградным током в обратном направлении — от окончаний к телу клетки.

    Основная функция нейронов — прием, преобразование и передача информации, закодированной в виде распространяющихся по отросткам нейрона электрических сигналов - потенциалов действия (ПД). Нейроны способны синтезировать биологически активные вещества (медиаторы, нейрогормоны, нейропептиды). У секреторных нейронов гипоталамуса эта способность особенно развита: выделяемые ими



    Практическое занятие 2 по теме № 11.

    Тема 11. Физиология отдельных структур головного мозга.

    2. Подпишите доли коры и их основные функции.

    Ответ:

    1 – Лобная.  

    2 – Теменная.  

    3 – Затылочная.

    4 – Височная.  

    Основная функция коры больших полушарий головного мозга заключается в воспроизведении и накоплении информации, полученной в процессе обучения. Также в ней проходят все высшие психические процессы, такие как мышление, речь и память.
    5. Подпишите структуры, относящиеся к промежуточному мозгу и стволу мозга и опишите их основные функции:




    Промежуточный мозг является конечным отделом мозгового ствола и сверху полностью покрыт большими полушариями. Основными образованиями промежуточного мозга являются таламус (зрительный бугор) и гипоталамус (подбугровая область). Последний соединен с гипофизом — главной железой внутренней секреции. Вместе они составляют единую гипоталамо-гипофизарную систему.
    Промежуточный мозг интегрирует сенсорные, двигательные и вегетативные реакции организма. Он подразделяется на таламус, эпиталамус и гипоталамус.
    Таламус

    Таламус представляет своего рода ворота, через которые в кору поступает и достигает сознания основная информация об окружающем мире и о состоянии тела. Таламус состоит примерно из 40 пар ядер, которые функционально делятся на специфические, неспецифические и ассоциативные.
    Специфические ядра служат областью переключения различных афферентных сигналов, направляющихся в соответствующие центры коры головного мозга. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы и внутренних органов. Эти структуры осуществляют регуляцию тактильной, температурной, болевой и вкусовой чувствительности, а также зрительных и слуховых ощущений. Так, латеральные коленчатые тела являются подкорковыми центрами зрения, а медиальные — подкорковыми центрами слуха. Нарушение функций специфических ядер приводит к выпадению конкретных видов чувствительности.
    Основной функциональной единицей специфических ядер таламуса являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении информации, идущей в кору больших полушарий от кожных, мышечных и других рецепторов.
    Неспецифические ядра являются продолжением ретикулярной формации среднего мозга, представляя собой ретикулярную формацию таламуса. Неспецифические ядра таламуса диффузно посылают нервные импульсы по множеству коллатералей ко всей коре головного мозга и образуют неспецифический путь анализатора. Без этого пути информация анализатора не будет полной.


    Повреждения неспецифических ядер таламуса приводят к нарушению сознания. Это свидетельствует о том, что им пульсация, поступающая по неспецифической восходящей системе таламуса, поддерживает уровень возбудимости корковых нейронов, необходимый для сохранения сознания.
    Ассоциативные ядра таламуса обеспечивают связь с теменной, лобной и височными долями коры больших полушарий. Повреждение этой связи сопровождается нарушениями зрения, слуха и речи.
    Через нейроны таламуса вся информация идет в кору головного мозга. Таламус выполняет роль «фильтра», отбирая наиболее значимую для организма информацию, которая поступает в кору больших полушарий.
    Таламус является высшим центром болевой чувствительности. При некоторых поражениях зрительного бугра появляются мучительные болевые ощущения, повышение чувствительности к раздражителям (гиперестезия); незначительное раздражение (даже прикосновение одежды) вызывает приступ мучительной боли. В других случаях нарушение функций таламуса вызывает состояние анальгезии — снижение болевой чувствительности вплоть до полного ее исчезновения.

    Эпиталамус

    Эпиталамус, или надбугорье, состоит из поводка и эпифиза (шишковидная железа), которые формируют верхнюю стенку третьего желудочка.
    Гипоталамус

    Гипоталамус располагается вентральнее зрительного бугра и является главным центром вегетативных, соматических и эндокринных функций. В нем различают 48 пар ядер: преоптические, супраоптическое и паравентрикулярное, средние, наружные, задние. Большинство авторов выделяют в гипоталамусе три основные группы ядер:
    передняя группа содержит медиальное преоптическое, супрахиазматическое, супраоптическое, паравентрикулярное и переднее гипоталамическое ядра;

    средняя группа включает дорсо-медиальное, вентро- медиальное, аркуатное и латеральное гипоталамические ядра;

    в состав задней группы входят супрамамиллярное, премамиллярное, мамиллярныеядра, задние гипоталамическое и перифорниатное ядра.

    Важная физиологическая особенность гипоталамуса — высокая проницаемость его сосудов для различных веществ.
    Гипоталамус тесно связан с деятельностью гипофиза. Средняя группа ядер образует медиальный гипоталамус и содержит нейроны- датчики, реагирующие на изменения состава и свойств внутренней среды организма. Латеральный гипоталамус формирует пути к верхним и нижним отделам ствола мозга.
    Нейроны гипоталамуса получают импульсы с лимбической системы, ретикулярной формации, мозжечка, ядер таламуса, подкорковых ядер и коры; участвуют в оценке информации и формировании программы действий. Они имеют двусторонние связи с таламусом, а через него — с корой больших полушарий. Определенные нейроны гипоталамуса чувствительны к химическим воздействиям, гормонам, гуморальным факторам.
    С передних ядер гипоталамуса осуществляются эфферентные влияния на исполнительные органы по парасимпатическому отделу, обеспечивающие общие парасимпатические приспособительные реакции (замедление сердечных сокращений, понижение тонуса сосудов и давления крови, увеличение секреции пищеварительных соков, усиление двигательной активности желудка и кишечника и др.). Через задние ядра осуществляются эфферентные влияния, поступающие к периферическим исполнительным органам по симпатическому отделу и обеспечивающие симпатические приспособительные реакции: учащение ритма сердечных сокращений, сужение сосудов и повышение давления крови, торможение моторной функции желудка и кишечника и др.
    В передних и преоптических ядрах расположены высшие центры парасимпатического отдела, а в задних и латеральных ядрах — симпатического отдела нервной системы. Через эти центры обеспечивается интеграция соматических и вегетативных функций. В целом гипоталамус обеспечивает интеграцию деятельности эндокринной, вегетативной и соматической систем.
    В латеральных ядрах гипоталамуса находится центр голода, ответственный за пищевое поведение. В медиальных ядрах расположен центр насыщения. Разрушение этих центров вызывает гибель животного. При раздражении центра насыщения прием корма прекращается, и возникают поведенческие реакции, характерные для состояния насыщения, а повреждение этого центра способствует повышенному потреблению корма и ожирению животных.
    В средних ядрах находятся центры регуляции всех видов обмена веществ, энергорегуляции, теплорегуляции (теплообразования и теплоотдачи), половой функции, беременности, лактации, жажды.
    Нейроны, расположенные в области супраоптического и пара- вентрикулярного ядер, участвуют в регуляции обмена воды. Раздражение их вызывает резкое увеличение потребления жидкости.
    Гипоталамус является главной структурой, ответственной за температурный гомеостаз. В нем различают два центра: теплоотдачи и теплопродукции. Центр теплоотдачи локализован в передней и преоптической зонах гипоталамуса и включает паравентрикулярные, супраоптические и медиальные преоптические ядра. Раздражение этих структур вызывает увеличение теплоотдачи в результате расширения сосудов кожи и повышения температуры ее поверхности, увеличения потоотделения. Центр теплопродукции расположен в заднем гипоталамусе и состоит из различных ядер. Раздражение этого центра вызывает повышение температуры тела в результате усиления окислительных процессов, сужения сосудов кожи и появления мышечной дрожи.
    Гипоталамус оказывает важное регулирующее влияние на половую функцию животных и человека.
    Специфические ядра гипоталамуса (супраоптическое и паравентрикулярное) тесно взаимодействуют с гипофизом. Их нейроны секретируют нейрогормоны. В супраоптическом ядре образуется антидиуретический гормон (вазопрессин), в паравентрикулярном — окситоцин. Отсюда эти гормоны транспортируются по аксонам в гипофиз, где и накапливаются.
    В нейронах гипоталамуса синтезируются либерины (рилизинг-гормоны) и статины, которые затем по нервным и сосудистым связям поступают в гипофиз. В гипоталамусе осуществляется интегрирование нервной и гуморальной регуляции функций многих органов. Гипоталамус и гипофиз образуют единую гипоталамо-гипофизарную систему с обратными связями. Уменьшение или увеличение количества гормонов в крови с помощью прямой и обратной афферентации изменяет активность нейросекреторных нейронов гипоталамуса, в результате чего изменяется уровень экскреции гипофизарных гормонов.


    написать администратору сайта