Главная страница
Навигация по странице:

  • Обнаружили ошибку Выделите ее мышью и нажмите Введение

  • Сигналы с двоичной фазовой манипуляцией

  • Спектр и векторная диаграмма BPSK сигнала

  • Относительная (дифференциальная) двоичная фазовая манипуляция (DBPSK)

  • Информация была полезна Поделитесь с друзьями! Список литературы

  • Радиотехнические цепи и сигналы.

  • Цифровая обработка сигналов

  • Bpsk qpsk пользуйтесь на здоровье. Обнаружили ошибкуВыделите ее мышью


    Скачать 269.02 Kb.
    НазваниеОбнаружили ошибкуВыделите ее мышью
    АнкорBpsk qpsk пользуйтесь на здоровье
    Дата16.06.2021
    Размер269.02 Kb.
    Формат файлаpdf
    Имя файлаBPSK и DBPSK.pdf
    ТипРеферат
    #217946

    Найти
    Сигналы с двоичной фазовой манипуляцией (BPSK)
    Содержание
    Введение
    Сигналы с двоичной фазовой манипуляцией
    Спектр и векторная диаграмма BPSK сигнала
    Относительная (дифференциальная) двоичная фазовая манипуляция (DBPSK)
    Выводы
    Список литературы
    Обнаружили ошибку?
    Выделите ее мышью
    и нажмите
    Введение
    Ранее мы рассматривали сигналы с частотной манипуляцией FSK и ее разновидности
    CPFSK, MSK и
    GMSK.
    Мы говорили о том, что эти сигналы получаются как частный случай частотной модуляции при цифровом модулирующем сигнале в виде последовательности импульсов, соответствующих нулям и единицам бинарного потока. Поскольку импульсы модулирующего сигнала меняют знак при смене информационного бита, то мы получали частотную манипуляцию.
    Проводя аналогию, мы можем рассмотреть сигналы с фазовой манипуляцией (phase shift key PSK), если подадим в качестве модулирующего сигнала на фазовый модулятор цифровой сигнал. В данной статье речь пойдет о двоичной фазовой манипуляции (binary phase shift key BPSK). Данный вид модуляции нашел очень широкое применение ввиду высокой помехоустойчивости и простоты модулятора и демодулятора. В отечественной литературе BPSK модуляцию обозначают как ФМн-2.
    Сигналы с двоичной фазовой манипуляцией
    Рассмотрим сигнал в виде последовательности импульсов цифровой информации,
    как это показано на рисунке 1.
    Содержание
    DSPL–2.0
    Форум
    English

    На верхнем графике показан униполярный цифровой сигнал, в котором информационному логическому нулю соответствует
    , а на нижнем графике биполярный цифровой сигнал
    , в котором котором информационному логическому нулю соответствует
    Подадим цифровой сигнал в качестве модулирующего сигнала на фазовый модулятор, как это показано на рисунке 2 с девиацией фазы равной рад.
    Рисунок 1: Униполярный и биполярный цифровой сигнал
    Рисунок 2: Формирование BPSK сигнала на основе фазвого модулятора

    Поскольку принимает только значения равные 0 и 1, то синфазная и
    квадратурная компоненты комплексной огибающей
    BPSK
    сигнала равны:
    (1)
    Тогда BPSK сигнал можно записать:
    (2)
    а структурную схему модулятора можно упростить, как это показано на рисунке 3.
    Внимательный читатель заметит, что эта схема точь в точь совпадает с рассмотренной ранее схемой
    АМ с подавлением несущей (DSB)
    , при модулирующем сигнале
    . Поясняющие графики формирователя BPSK показаны на рисунке 4.
    Рисунок 3: Упрощенная структурная схема BPSK модулятора

    Информация передается со скоростью бит/c, длительность одного импульса цифровой информации равна
    . Исходный модулирующий сигнал умножается на несущее колебание ( на рисунке
    ) и получаем фазоманипулированный сигнал со скачком фазы на рад. Такой же скачок фазы мы наблюдали при формировании DSB сигнала. Таким образом BPSK модуляция –
    вырожденный тип фазовой манипуляции, который совпадает с балансной амплитудной модуляцией при биполярном цифровом модулирующем сигнале.
    Спектр и векторная диаграмма BPSK сигнала
    Рисунок 4: Поясняющие графики BPSK модулятора

    Поскольку BPSK сигнал можно представить как DSB сигнал, то его спектр представляет собой перенесенный на несущую частоту спектр цифрового биполярного модулирующего сигнала
    . На рисунке 5 показан спектр BPSK сигнала при скорости передачи информации и несущей частоте
    . Из рисунка 5 отчетливо видно, что спектр BPSK сигнала имеет основной лепесток и медленно убывающие боковые лепестки. На рисунке 6 показаны основные соотношения спектра BPSK и параметров исходного модулирующего сигнала.
    Так основной лепесток спектра BPSK имеет ширину равную удвоенной скорости передачи информации
    , симметричен относительно несущей частоты
    . Уровень максимального (первого) бокового лепестка спектра равен -13 дБ. Также можно сказать о том, что ширина боковых лепестков равна
    Рассмотрим векторную диаграмму BPSK сигнала. Согласно выражению (1) синфазная компонента комплексной огибающей
    BPSK сигнала равна
    , а квадратурная компонента
    . При этом принимает значения
    ,
    тогда векторная диаграмма BPSK сигнала показана на рисунке 7.
    -50
    -40
    -30
    -20
    -10 0
    0 50 100 150 200 250 300 350 400 450 500
    |S
    b p
    sk
    (
    f)
    |
    2
    , дБ
    f, кГц
    Br = 20 кбит/c f
    0
    = 250 кГц
    Рисунок 5: Спектр BPSK сигнала
    Рисунок 6: Спектральные соотношения параметров BPSK
    сигнала

    Вектор комплексной огибающей может принимать одно из двух значений
    (при передаче информационного нуля) и при передаче информационной единицы.
    Относительная (дифференциальная) двоичная фазовая манипуляция (DBPSK)
    При передаче информации с использованием BPSK требуется применять следящие системы для демодуляции сигнала. При этом часто применяют некогерентные устройства приема, которые не согласованы по фазе с задающим генератором на передающей стороне, и соответственно не могут отследить случайный поворот фазы в результате распространения, выходящий за интервал
    . Например рассмотрим рисунок 8.
    Рисунок 7: Векторная диаграмма BPSK сигнала

    Исходная векторная диаграмма BPSK (в случае с PSK сигналами векторную диаграмму часто называют созвездие) показана на рисунке 8а и 8г. Красным обозначено значение соответствующее информационному нулю, а синим единице. В результате распространения сигнал приобретет случайную начальную фазу и созвездие повернется на некоторый угол. На рисунке 8б показан случай когда поворот созвездия лежит в пределах от до рад. В этом случае при некогерентном приеме все созвездие будет повернуто как это показано стрелочками на рисунке 8б. Тогда после поворота созвездие займет исходное положение и информация будет демодулирована верно. На рисунке 8д показан случай когда поворот созвездия лежит в пределах от до рад. В этом случае, при приеме созвездие также будет повернуто для горизонтального расположения, но как следует из рисунка 8е информационные нули и единицы будут перепутаны.
    Для того чтобы устранить перепутывание информационных символов, используют относительную манипуляцию или как ее еще называют дифференциальную BPSK (DBPSK).
    Суть относительной манипуляции заключается в том, что кодируется не сам бит информации, а его изменение. Структура системы передачи данных с использованием
    DBPSK показана на рисунке 9.
    Рисунок 8: Пояснения к некогрентному приему BPSK

    Исходный битовый поток проходит дифференциальное кодирование, после чего модулируется BPSK и на приемной стороне демодулируется некогерентным BPSK
    демодулятором. Демодулированный поток проходит дифференциальный декодер и получаем принятый поток
    Рассмотрим дифференциальный кодер, показанный на рисунке 10.
    Суммирование производится по модулю два , что соответствует логическому XOR
    (исключающее ИЛИ). Обозначение означает задержку на один бит информации.
    Пример дифференциального кодирования приведен на рисунке 11.
    Рисунок 9: Структура системы передачи данных с использованием DBPSK
    Рисунок 10: Дифференциальный кодер
    Рисунок 11: Пример дифференциального кодирования битового потока

    Исходный битовый поток равен 011100101, на выходе дифференциального кодера мы получили 010111001. Первый бит (в приведенном примере первый 0 не кодируется), затем первый происходит сложение по модулю два предыдущего бита на выходе кодера и текущего бита на входе. Для дифференциального декодирования необходимо сделать обратную процедуру согласно схемы показанной на рисунке 12 (структура дифференциального декодера показана на рисунке 9).
    Как видно из кодированного битового потока 010111001 мы получили исходный
    011100101. Теперь рассмотрим дифференциальный декодер, если мы инвертируем на приемной стороне все биты кодированного потока, т.е. вместо 010111001 примем
    101000110. Это наглядно показано на рисунке 13.
    Из рисунка 13 наглядно следует, что при перепутывании всех бит информации на выходе дифференциального декодера информация не искажается (за исключением первого бита,
    Рисунок 12: Пример дифференциального декодирования битового потока
    Рисунок 13: Пример дифференциального декодирования при инверсии принятого потока
    показанного красным), и в этом несомненное преимущество DBPSK, которое позволяет существенно упростить передающие и приемные устройства. Но нужно также сказать и о недостатках дифференциального кодирования. Главным недостатком DBPSK по сравнению с BPSK является более низкая помехоустойчивость, поскольку ошибки приема размножаются на этапе декодирования.
    Рассмотрим пример. Пусть исходный поток равен 011100101, закодированный поток равен 010111001. Пусть при приеме четвертый бит закодированного потока был принят с ошибкой, тогда на входе декодера будет 010101001. И в результате декодирования целых два бита будут декодированы с ошибкой (смотри рисунок 14).
    Выводы
    Таким образом, мы рассмотрели сигналы с двоичной фазовой манипуляцией (BPSK) и показали, что BPSK — частный случай PSK при входном сигнале в виде потока биполярных импульсов, который является вырожденным и сводится к DSB сигналу. Мы рассмотрели спектр BPSK и его спектральные характеристики: ширина главного лепестка, уровень боковых лепестков. Также было введено понятие относительной или дифференциальной двоичной фазовой манипуляции DBPSK, которая позволяет устранить инверсию символов при некогерентном приеме на этапе декодирования, но ухудшает помехоустойчивость
    DBPSK по сравнения с BPSK ввиду размножения ошибок на этапе декодирования.
    Информация была полезна? Поделитесь с друзьями!
    Список литературы
    Последнее изменение страницы: 07.02.2021 (14:13:14)
    Страница создана Latex to HTML translator ver. 5.20.11.14
    Рисунок 14: Размножение ошибок приема при декодировании DBPSK
    Facebook
    Twitter
    Мой мир
    Вконтакте 1
    Одноклассники
    [1] Баскаков, С.И. Радиотехнические цепи и сигналы. Москва, ЛЕНАНД, 2016, 528 c. ISBN 978-5-9710-2464-4
    [2] Гоноровский И.С. Радиотехнические цепи и сигналы Москва, Советское радио, 1977, 608 c.
    [3] Сергиенко А.Б. Цифровая обработка сигналов СПб, Питер, 2002.

    © Бахурин Сергей 2015 - 2020. Все права защищены.
    Копирование материалов сайта без разрешения автора запрещено.
    Содержание
    DSPL–2.0
    Форум


    написать администратору сайта