Физика пласта. Методы определения проницаемости коллекторов в связи с типом кол. Общиипонятия о коллекторах нефти и газа Основные признаки породколлекторов Методы определения проницаемости
Скачать 61.71 Kb.
|
Общиипонятия о коллекторах нефти и газа………………………...…3 Основные признаки пород-коллекторов………………………………4 Методы определения проницаемости………………………………..…9 Лабораторные методы………………………………………………..9 Метод исследования на установившихся режимах……………...13 Определение коэффициента проницаемости по корреляционным связям…………………………………………………………………14 Гидродинамический каротаж……………………………………...15 Измерение проницаемости по профилю полноразмерного керна…………………………………………………………………16 Список использованной литературы………………………………………...17 Коллекторы нефти и газа - горные породы, которые обладают емкостью, достаточной для того, чтобы вмещать УВ разного фазового состояния (нефть, газ, газоконденсат), и проницаемостью, позволяющей отдавать их в процессе разработки. Среди коллекторов нефти и газа преобладают осадочные породы. В природных условиях залежи нефти и газа чаще всего приурочены к терригенным и карбонатным отложениям, в других осадочных толщах они встречаются значительно реже. Магматические и метаморфические породы не являются типичными коллекторами. Нахождение в этих породах нефти и газа - это следствие миграции углеводородов в выветренную часть породы, где в результате химических процессов выветривания, а также под воздействием тектонических процессов могли образоваться вторичные поры и трещины. Нефтяные и газовые месторождения на земном шаре встречаются в разных районах, в границах различных геоструктурных элементов. Они известны как в геосинклинальных, так и в платформенных областях и предгорных прогибах. Скопления нефти и газа установлены в отложениях всех возрастов, начиная от кембрия и кончая верхним плиоценом. Кроме того, известны скопления нефти и газа как в более древних докембрийских, так и в более молодых четвертичных отложениях. Наибольшее количество залежей в разрезе осадочного чехла на территории бывшего СССР приходится на отложения каменноугольного (29 %), девонского (19 %) и неогенового (18 %) возраста. По разным оценкам запасы нефти распределяются в коллекторах следующим образом: в песках и песчаниках - от 60 до 80 %; в известняках и доломитах - от 20 до 40 %; в трещиноватых глинистых сланцах, выветрелых метаморфических и изверженных породах - около 1 %. В странах Ближнего и Среднего Востока разрабатываются главным образом карбонатные коллекторы мезозойского возраста. На территории бывшего Советского Союза более 70 % нефтяных и газовых залежей приурочены к терригенным породам-коллекторам. Основные признаки пород-коллекторов К основным признакам, характеризующим качество коллектора, относятся пористость, проницаемость, плотность, насыщение пор флюидами (водо-, нефте- и газонасыщенность), смачиваемость, пьезопроводность, упругие силы пласта. Совокупность этих признаков, выраженных количественно, определяет коллекторские свойства породы. Пористость - совокупность всех пор независимо от их формы, размера, связи друг с другом. Понятие пористости соответствует полной пористости породы и численно выражается через коэффициент пористости: Кп = Vпор/Vпороды * 100 %. Открытая пористость - совокупность сообщающихся между собой пор, численно соответствующая отношению объема сообщающихся пор к объему породы. Эффективная пористость - совокупность пор, через которые может осуществляться миграция данного флюида. Она зависит от количественного соотношения между флюидами, физических свойств данного флюида, самой породы. По А. А. Ханину (1969), эффективная пористость - объем поровой системы, способной вместить нефть и газ с учетом остаточной водонасыщенности. Наиболее высокие значения характерны для полной пористости, затем открытой и минимальные для эффективной пористости. Полная пористость может быть открытой в песках и слабо уплотненных песчаниках. С увеличением глубины залегания открытая пористость снижается интенсивнее, чем полная. Величина полной пористости колеблется от долей процента до десятков процентов. По генезису поры могут быть первичными и вторичными. Первичные поры между обломочными зернами называются межзерновыми, внутри органических остатков - внутриформенными. Вторичные поры - трещины и каверны. Размеры порового пространства - от долей микрометров до десятков метров. В обломочных породах - песчаных и алевритовых - размер пор обычно меньше 1 мм. По размеру выделяются поры сверхкапиллярные > 0,1 мм; капиллярные 0,0002-0,1 мм; субкапиллярные < 0,0002 мм; ультракапиллярные < 0,1 мкм. Размеры и конфигурация внутриформенной пористости определяется морфологическими особенностями фоссилизированных органических остатков. Каверны - поры, образованные в результате растворения составных частей хемогенных или биогенных пород или разложения соединений, неустойчивых в определенных термобарических обстановках. Каверны по размеру бывают от долей миллиметров до нескольких километров и разделяются на мелкие - 0,1-10 мм; крупные (микрополости) - 10-100 мм и пещеристые полости - > 100 мм. Склонность породы к растрескиванию характеризуется ее пластичностью. Пластичность - способность твердого тела под действием механических напряжений изменять свою форму без нарушения связей между составляющими частями. Коэффициент пластичности (Кпл) - отношение всей работы, затраченной на разрушение образца, к работе, затраченной на пластическую деформацию. Коэффициент пластичности меняется от 1 до бесконечности. По степени пластичности выделяются три группы пород: Хрупкие, Пластично-хрупкие, Высокопластичные. Трещины в породах бывают открытые и закрытые (за счет вторичного смыкания и минерализации). Вследствие тектонических процессов образуются системы трещин, ориентированных в определенной плоскости. Если вдоль трещин не происходит смещение пород или оно незначительно, то система трещин называется трещиноватостью. В одном пласте может быть несколько систем трещин, обычно разновозрастных. Практический интерес представляют только открытые трещины, по которым может осуществляться миграция УВ. Обычно трещинная пористость составляет 2-3 %, иногда до 6 %. При характеристике трещин различают густоту, плотность и раскрытость трещин. Густота трещин - количество трещин на 1 м длины в направлении, перпендикулярном простиранию трещин. Плотность трещин - густота трещин на 1 м2 площади. Если в пласте одна система трещин, то величина плотности соответствует густоте. Раскрытость трещин - расстояние между стенками трещин. Трещинные поры разделяются по степени раскрытости. По К. И. Багринцевой (1977), трещины подразделяются на очень узкие (0,001-0,01 мм), узкие (0,01-0,05 мм), широкие (0,05-0,1 мм), очень широкие (0,1-0,5 мм) и макротрещины (> 0,5 мм). Е. М. Смехов (1974) предлагал различать микротрещины (< 0,1 мм) и макротрещины (> 0,1 мм). Особую значимость приобретает характеристика трещин в коллекторах сложного типа, которым свойственно наличие нескольких видов пористости. В табл. 2 приводится генетическая классификация трещин ВНИГРИ (Методические рекомендации..., 1989) Проницаемость - способность горных пород пропускать сквозь себя жидкость или газ. Пути миграции флюидов - поры, каверны, соединяющиеся каналами, трещины. Чем крупнее пустоты, тем выше проницаемость. Для оценки проницаемости обычно используется линейный закон фильтрации Дарси, согласно которому скорость фильтрации жидкости в пористой среде пропорциональна градиенту давления и обратно пропорциональна динамической вязкости жидкости. Закон Дарси применим при условии фильтрации однородной жидкости, при отсутствии адсорбции и других взаимодействий между флюидом и горной породой. Величина проницаемости выражается через коэффициент проницаемости (Кпр): Кпр = Q m L / D p F , где Q - объем расхода жидкости в единицу времени; D р - перепад давления; L - длина пористой среды; F - площадь поперечного сечения элемента пласта; m - вязкость жидкости. Выразив величины, входящие в приведенное выше уравнение, в системе единиц СИ, получим: Q = м3/ с; D р = Н/ м2; L = м; F = м2; m = Н?с/ м2; Кпр = м2. Единица проницаемости в системе СИ соответствует расходу жидкости 1м3/с при фильтрации ее через пористый образец горной породы длиной 1м, площадью поперечного сечения 1 м2 при вязкости жидкости н*с/м2 при перепаде давления 1н/м2. Практической единицей измерения проницаемости является дарси. 1 дарси - проницаемость пористой системы, через которую фильтруется жидкость с вязкостью 1 сантипуаз (сП), полностью насыщающая пустоты среды, со скоростью 1 см3/с при градиенте давления 1 атм (760 мм) и площади пористой среды 1 см2. 1 дарси = 0,981 ? 10-12 м2. Различают несколько видов проницаемости. Абсолютная проницаемость - это проницаемость горной породы применительно к однородному флюиду, не вступающему с ней во взаимодействие, при условии полного заполнения флюидом пор среды. Абсолютная проницаемость измеряется в сухой породе при пропускании через последнюю сухого инертного газа (азота, гелия). В природе не встречаются породы, не заполненные флюидами (различными газами, жидкими углеводородами, водой и т.д.). Обычно поровое пространство содержит в различных количествах воду, газ и нефть (в залежах). Каждый из флюидов оказывает воздействие на фильтрацию других. Поэтому редко можно говорить об абсолютной проницаемости в природных условиях. Эффективная (фазовая) проницаемость - проницаемость горной породы для данного жидкого (или газообразного) флюида при наличии в поровом пространстве газов (или жидкостей). Этот вид проницаемости зависит не только от морфологии пустотного пространства и его размеров, но и от количественных соотношений между флюидами. Относительная проницаемость - отношение эффективной проницаемости к абсолютной. Относительная проницаемость породы для любого флюида возрастает с увеличением ее насыщенности этим флюидом. Все породы в той или иной мере проницаемы. Все породы по своим свойствам являются анизотропными, следовательно, и проницаемость в пласте по разным направлениям будет различной. В обломочных породах Кпр по наслоению выше, чем в направлении, перпендикулярном наслоению. В трещиноватых породах по направлению трещин проницаемость может быть очень высокой, а в крест простиранию трещин может практически отсутствовать. Максимальны значения проницаемости для трещинных пород. Наиболее распространенное значение Кпр для промышленно продуктивных пластов от 1·10-15 до 1·10-12 м2. Проницаемость более 1·10-12 м2 является очень высокой, характерна для песков, песчаников до глубин 1,5-2 км и трещинных карбонатных пород. Плотность породы - отношение массы породы (г) к ее объему (см3). Плотность зависит от плотности твердой, жидкой и газообразной фаз, структурно-текстурных признаков породы, а также от пористости. Различные литологические типы пород с глубиной уплотняются по-разному. Кd - коэффициент уплотнения породы, представляющий собой отношение плотности породы (dп) к плотности твердой фазы или минералогической плотности (dт). Коэффициент уплотнения - безразмерная величина, показывающая, во сколько раз плотность породы меньше плотности ее твердой фазы. По мере уплотнения dп®dт, а Кd®1. Коэффициент уплотнения связан с величиной полной пористости соотношением Кs = 1-Кп. Глинистые породы достигают Кd = 0,80-0,85 к глубине 1,5-2 км, затем темп уплотнения понижается. Песчаные и алевритовые породы достигают Кd = 0,90-0,95 к глубинам 3,5-5 км. Быстро уплотняются хемогенные известняки, для которых уже на глубине 0,5-1 км Кd = 0,95-0,97. Насыщенность пор флюидами - заполнение порового пространства пород-коллекторов жидкими и/или газовыми фазами. В зависимости от флюида-заполнителя выделяются водо-, нефте- и газонасыщенность; выражаются в процентах. Водонасыщенность - степень заполнения порового (пустотного) пространства водой. Вода в породе может быть свободная и связанная. Свободная вода перемещается в поровом пространстве при формировании скоплений УВ и может полностью или частично вытесняться, связанная - остается. Физически связанная вода зафиксирована в породе вследствие проявления молекулярных сил (сорбция), химически связанная находится в структуре минералов (например гипс). С точки зрения водонасыщенности представляют интерес свободная и физически связанная вода - та и другая занимают пустотное пространство пород. Количество воды в породе после заполнения последней флюидом является ее остаточной водонасыщенностью. Содержание остаточной воды тем выше, чем более дисперсна порода. Например, в уплотненных мелкозернистых песчаниках остаточная водонасыщенность составляет 10-30 %, а в глинистых алевролитах - 70-75 %. При подготовке исходных данных для подсчета запасов нефти и газа из величины средней пористости пород продуктивного пласта необходимо вычесть содержание остаточной воды. Нефте- и газонасыщенность - степень заполнения порового пространства породы соответственно нефтью или газом. Смачиваемость - способность породы смачиваться жидкостью. В нефтяной геологии представляет интерес смачиваемость минеральных фаз водой и нефтью. Выделяются гидрофильные и гидрофобные минералы. Гидрофильные минералы способствуют повышению доли остаточной воды по отношению к нефти. По отношению к нефти также выделяются смачиваемые ею минеральные фазы, которые способствуют понижению нефтеотдачи. Пьезопроводность - способность среды передавать давление. В случае несжимаемости среды процесс перераспределения давления происходит мгновенно. В нефтяном пласте, который характеризуется значительным проявлением упругих сил, перераспределение давления, вызванное эксплуатацией пласта, может длиться очень долго. Скорость передачи давления характеризуется коэффициентом пьезопроводности (см2/с): χ = Кпр/μ(mβж +βп) где χ - коэффициент пьезопроводности, см2/сек, Кпр- коэффициент проницаемости , д, μ - вязкость жидкости (нефти или воды) в пластовых условиях, спз; m- коэффициент пористости породы в долях единицы; βж-коэффициент сжимаемости жидкости (нефти или воды), 1/кГ/см2; βп -коэффициент сжимаемости породы, 1/кГ/см2 Упругие силы пласта - силы упругости породы. Степень упругости определяется коэффициентом объемного упругого расширения (коэффициент сжимаемости), показывающим, на какую часть от своего первоначального объема изменяется объем жидкости или горной породы при изменении давления на 1 атм. Методы определения проницаемости Известны 5 групп методов в определении проницаемости коллекторов: лабораторные (по кернам) гидродинамические (по результатам исследования скважин на приток) через корреляционные зависимости (опосредствованные через лабораторные данные) гидродинамический каротаж (ГДК) профильный метод по полноразмерному керну Следует иметь в виду, что проницаемость горных пород зависит от многих факторов - горного давления, температуры, степени взаимодействия флюидов с породой и т.д., например, газопроницаемость коллектора при давлениях низких (близких к атмосферному) существенно выше проницаемости пород даже для неполярных углеводородных жидкостей, которые практически не взаимодействуют с породой. Иногда проницаемость некоторых пород для газа при атмосферных условиях превышала их проницаемость при давлении 10 МПа в два раза. Но с увеличением температуры среды газопроницаемость породы уменьшается: по данным Н. С. Гудок, рост температуры с 20 до 90°С может сопровождаться уменьшением проницаемости на 2030 %. 3.1 Лабораторные методы. Проницаемость горных пород зависит от многих факторов - горного давления в условиях их залегания, от температуры, степени взаимодействия флюидов с породой и т.д. Установлено, например, что газопроницаемость в атмосферных условиях существенно выше проницаемости пород даже для неполярных углеводородных жидкостей, практически не взаимодействующих с породой. Это объясняется частичным проскальзыванием газа вдоль поверхности каналов пористой среды вследствие незначительного внутреннего трения молекул газа (эффект Клинкенберга). По данным Н.С. Гудок, иногда проницаемость некоторых пород для газа при атмосферных условиях превышала их проницаемость при давлении 10 МПа в, два раза. Установлено, что с увеличением температуры среды газопроницаемость пород уменьшается, что связано с возрастанием скоростей движения молекул, уменьшением длины свободного их пробега и возрастанием сил трения вследствие интенсификации обмена количеством движения между отдельными слоями. По данным Н.С. Гудок, рост температуры с 20 до 90°С может сопровождаться уменьшением проницаемости пород на 20-30%. Влияние на проницаемость пород давления, температуры,. степени взаимодействия флюидов с породой и необходимость измерения проницаемости пород по газу и по различным жидкостям приводит к необходимости конструировать приборы, позволяющие моделировать различные условия фильтрации с воспроизведением пластовых давлений и температур. Поэтому для определения абсолютной проницаемости горных пород используются разнообразные приборы. Однако принципиальные схемы их устройства большей частью одинаковы - все они состоят из одних и тех же основных элементов: кернодержателя, позволяющего фильтровать жидкость и газы через пористую среду, устройств для измерения давления на входе и выходе из керна, расходомеров и приспособлений, создающих и поддерживающих постоянный расход жидкости или газа через образец породы. Различаются они лишь тем, что одни из них предназначены для измерения проницаемости при больших давлениях, другие - при малых, а третьи - при вакууме. Одни приборы используются для определения проницаемости по воздуху, другие по жидкости. Поэтому от-; дельные их узлы имеют соответственно различное конструктивное оформление. Схемы приборов для определения проницаемости пород: 1 - кернодержатель; 2 - расходомер; 3 - устройство создающее постоянный расход жидкости или газа через керн; 4-измерители перепада давления; 5 - сосуд с водой; 6 - стеклянная трубка; 7 - вентиль Кроме стационарных приборов, схема строения которых приведена на рисунке а, для измерения проницаемости используются также упрощенные устройства. Схема одного из них приведена на рисунке б. Образец в кернодержателе одной стороной соединен с атмосферной трубкой, конец которой опущен под уровень воды. Создав через вентиль 7 разрежение под керном, уровень воды в трубке поднимают на некоторую высоту. После закрытия этого вентиля фильтрация воздуха через керн осуществляется под действием переменного разрежения, характеризующегося высотой столба воды в трубке. Мерой проницаемости породы служит (при постоянстве размеров образца) время опускания мениска в трубке в заданном интервале. На практике оказывается, что проницаемость для жидкости обычно почти всегда меньше, чем для газа. Лишь при высокой проницаемости пород значения ее примерно одинаковы для, жидкости и газа. Уменьшение проницаемости одной и той же породы для жидкости по сравнению с проницаемостью для газа происходит вследствие разбухания глинистых частиц и адсорбции жидкости при фильтрации нефти и воды через породы. Поэтому абсолютную проницаемость пород принято определять с помощью воздуха или газа. Состав газа на проницаемость пород заметно влияет только при высоком вакууме (при так называемом кнудсеновском режиме течения газа, когда столкновения молекул редки - по сравнению с ударами о стенки пор, т.е. когда газ настолько разрежен, что средняя длина пробега молекул сравнима с диаметром поровых каналов). В этих условиях проницаемость, пород зависит от среднего давления, молекулярной массы газа t и температуры и тем выше, чем меньше молекулярная масса и давление. В пластовых условиях проницаемость горных пород практически мало зависит от состава газа. Как уже упоминалось, фазовые проницаемости, кроме степени насыщенности пористой среды различными фазами, зависят от ряда других факторов и. специфических свойств конкретной пластовой систёмы. В результате фактические показатели иногда значительно отклоняются от расчетных. Поэтому при определении зависимости относительных проницаемостей от насыщенности следует проводить специальные опыты, поставленные с учетом специфических свойств исследуемой пластовой системы. Устройство установок, применяемых для этих целей, более сложное, чем установок, рассмотренных ранее, так как необходимо моделировать многофазный поток, регистрировать насыщенность порового пространства различными фазами и расход нескольких фаз. Установки для исследования многофазного потока обычно состоят из следующих основных частей: - приспособления для приготовления смесей и питания керна; - кернодержателя специальной конструкции; - приспособления и устройства для приема, разделения и измерения раздельного расхода жидкостей и газа; - устройства для измерения насыщенности различными фазами пористой среды; - приборов контроля и регулирования процесса фильтрации. Насыщенность порового пространства различными фазами можно определить несколькими способами: измерением электропроводности пористой среды, взвешиванием образца (весовой метод) и т.д. В первом случае измеряется электропроводность участка пористой среды, строится график, который сравнивается с тарировочной кривой (заранее составленной и представляющей собой зависимость электропроводности среды от содержания в порах различных фаз), затем определяется насыщенность порового пространства соответствующими фазами. Такой метод пригоден, если одна из жидкостей, используемых при исследовании, является проводником электричества (соленая вода, водоглицериновые смеси и т.д.). При весовом методе среднюю насыщенность образца жидкостью и газом определяют по изменению его массы вследствие изменения газосодержания в поровом пространстве среды. При движении многофазных систем проницаемость для каждой фазы определяется по следующим формулам: Здесь Qв, Qн и Qг - соответственно расходы в единицу времени воды, нефти и средний расход газа в условиях образца kн, kг и kв - фазовые проницаемости для нефти, газа и воды μв, μн и μг - соответственно динамические вязкости воды, нефти и газа; F-площадь фильтрации; ∆р - перепад давления, ∆L - длина пористой среды. М Фазовые проницаемости рассчитываются также по результатам вытеснения из пористой среды одной фазы другой и по промысловым данным. Приближенно их можно оценить также по кривым распределения пор по размерам. 3.2 Метод исследования на установившихся режимах. В первом случае используется формула обработки бланка глубинного манометра, в простейшем случае формула обработки КВД без учета притока жидкости в ствол скважины после закрытия ее на устье: где Q - дебит скважины до остановки; h - эффективная работающая толщина пласта; χ - пьезопроводность пласта; rc - радиус скважины (с учетом ее гидродинамического несовершенства); t - время после остановки. Гидропроводности: и относительной пьезопроводности: Подставив в формулу вязкость и эффективную толщину пласта, можно определить проницаемость пласта. Во втором случае (при построении индикаторной диаграммы по 3-4 режимам работы скважины) используют формулу Дюпюи в условиях соблюдения справедливости линейного закона фильтрации Дарси: где Рпл - пластовое давление на период исследования скважины; Рзаб - забойные давления соответствующих режимов работы скважины; Rк - радиус контура питания (обычно в группе интерферирующих скважин берется половина расстояний между ними; в случае одиночно работающей скважины в бесконечном пласте (на разведочных площадях) его величина гидродинамически обоснована для конкретных условий); rс - радиус гидродинамически несовершенной скважины (с учетом несовершенства ее по степени вскрытия и по характеру вскрытия пласта). Методика данных исследований излагается в специальных курсах. Следует иметь в виду, что проницаемость по формуле Дюпюи характеризует узкую прискважинную зону пласта (кольцо толщиной в несколько см). Метод КВД обладает большей «глубинностью» исследования, что зависит от длительности записи КВД (до нескольких метров и даже десятков метров). Определение коэффициента проницаемости по корреляционным связям. Проницаемость характеризует фильтрационные свойства коллекторов, при этом не участвуя в формуле подсчёта запасов. Однако, она, как необходимый параметр, используется при составлении технологической схемы разработки залежей. Например, продуктивные нефтенасыщенные отложения пластов ПК Самотлорского месторождения практически не охарактеризованы керном. Поэтому для расчёта kпр в этих отложениях была использована зависимость kпр(kп), полученная Г.В. Таужнянским по керну пластов ПК нескольких месторождений Тюменской области (Губкинское, Комсомольское, Северо-Комсомольское и Западно-Таркосалинское). Для пластов ПК2 - ПК20 по данным керна, отобранного из этих отложений, была построена зависимость kпр(kп). Как видно, связь имеет довольно высокий коэффициент корреляции, что позволило использовать ее для расчета проницаемости пластов ПК2-ПК20 (по Бересневу Н.Ф.,2001г). Полученная зависимость по аналогии была перенесена для решения вопросов по пластам группы ПК Самотлорского месторождения. Гидродинамический каротаж. Гидродинамический каротаж осуществляется с помощью каротажного оборудования. Этот вид каротажа позволяет изучить гидродинамические параметры пласта, которые используются для решения геологических задач. Применяются два типа аппаратуры ГДК: АИПД 7 - 10 и ГДК - 1. Весь процесс гидродинамических исследований подразделяется на три последовательные стадии: - возникновение и распространение гидродинамического возмущения в пласте; - приток флюида из пласта; - восстановление пластового давления в зоне исследования после прекращения активного притока. При проведении ГДК на стенке скважины на стенке скважины образуется небольшой участок (сток). В процессе ГДК определяются следующие параметры пласта: - гидростстическое давление в скважине; - пластовое давление; - коэффициент проницаемости или коэффициент подвижности пластового флюида; - коэффициент турбулентности. Коэффициент проницаемости определяется из выражения: К = Vµ /AΔPΔt, где V -отобранный объём пластовой жидкости; Δt - время фильтрации; ΔP - депрессия; µ - вязкость пластовой жидкости. Для определения коэффициента проницаемости необходимо знать объёмы флюида Vi (определяется конструкцией пробоприёмника), отобранного при различных депрессиях ΔPi, величинах и времени Δti, геометрический коэффициент А (определяется геометрической формой отверстия стока) и µ - вязкость пластовой жидкости. Уравнение справедливо только при соблюдении линейного закона фильтрации. Измерение проницаемости по профилю полноразмерного керна Результаты измерений профильной проницаемости привлекаются для оперативной оценки коллекторских свойств горных пород и необходимы при выборе точек отбора образцов для определения фильтрационно - емкостных свойств коллекторов. Профильная газопроницаемость на керне измеряется на автоматизированном сканирующем параметре Autoscan. Измерения осуществляется через плоскую боковую грань колонки керн, после продольной распиловки полноразмерного керна диаметром 80, 100, и 110мм, при фильтрации газа - азота. Измерения производятся с шагом 5 - 10см по глубине. Шаг сканирования зависит от литологического состава пород. Определение проницаемости производится в условиях нестационарной фильтрации азота по скорости падения давления на входе зонда приложенного к образцу. При этом методе измеряется проницаемость сегмента, прилегающего к зонду. Время измерения проницаемости составляет от 3 до 120сек. Диапазон измерения проницаемости - от 0,01 до 3000мД. Список использованной литературы. 1. Э.А. Бакиров, В.И. Ермолкин, В.И. Ларин. Геология нефти и газа. Москва “НЕДРА” 1990. 2. Ш.К. Гиматудинов. Физика нефтяного и газового пласта. Москва 1971. 3. П.В.Флоренский, Л.В. Милосердова, В.П. Балицкий. Основы литологии. Москва 2003. 4. Информация с сайта Neftegaz.ru |