Главная страница
Навигация по странице:

  • Термины и определения

  • Обеспечение единства измерений

  • Государственная система обеспечения единства измерений

  • Единица физической величины

  • Средство измерений

  • Погрешность средства измерения

  • Калибровка средства измерений

  • Измерительный канал измерительной системы (измерительный канал ИС)

  • Компонент измерительной системы (компонент ИС)

  • 1. Поверка и калибровка ИИС

  • 1.2 Методы контроля метрологических характеристик

  • 1.3 Метод определения погрешности

  • 1.4 Проблемы и способы решения в области поверки и калибровки ИИС

  • 2. Организация работ по обеспечению качества на предприятии ФБУ «Сахалинский ЦСМ»

  • Список используемой литературы

  • Поверка и калибровка ИИС. Оглавление Введение Термины и определения 1


    Скачать 430.38 Kb.
    НазваниеОглавление Введение Термины и определения 1
    АнкорПоверка и калибровка ИИС
    Дата21.08.2021
    Размер430.38 Kb.
    Формат файлаrtf
    Имя файла708247.rtf
    ТипДокументы
    #227522

    Размещено на http://www.allbest.ru/

    Оглавление
    Введение

    Термины и определения

    1. Поверка и калибровка ИИС

    1.1 Общие положения

    1.2 Методы контроля метрологических характеристик

    1.3 Метод определения погрешности

    1.4 Проблемы и способы решения в области поверки и калибровки ИИС

    2. Организация работ по обеспечению качества на предприятии ФБУ «Сахалинский ЦСМ»

    Заключение

    Список используемой литературы

    Введение
    На сегодня метрологическая деятельность регулируется Законом Российской Федерации «Об обеспечении единства измерений». Из этого следует, что эта деятельность включена в общую систему права и с одной стороны имеет свои специфические нормы, с другой - должна тесно взаимодействовать с общей системой государственного управления и государственной системой общеобязательных норм.

    Государственная функция требует государственного управления . В свою очередь управление реализуется в определенной системе. Такой системой является национальная система измерений, включающая всех участников измерительного дела - разработчиков, производителей и пользователей средств измерений. Для достижения единства измерений формируются условия для функционирования «государственной системы обеспечения единства измерений» (ГСИ). Важнейшим звеном этой системы является «законодательная метрология». Формально этот термин обозначает раздел метрологии, включающий комплексы взаимосвязанных и взаимообусловленных общих правил, требований и норм, а также другие вопросы, нуждающиеся в регламентации и контроле со стороны государства, направленные на обеспечение единства измерений и единообразия средств измерений.

    С 1 января 2009 г. Вступил в силу новый Закон Российской Федерации «Об обеспечении единства измерений», который стал актом, обладающим высшей юридической силой в сферах измерительного дела. Он установил регулирование наиболее важных отношений. В этих условиях конкретизация основных положений Закона возлагается на акты правотворчества -подзаконные акты или нормативные документы законодательной метрологии.

    Настоящий Федеральный закон регулирует отношения, возникающие при выполнении измерений, установлении и соблюдении требований к измерениям, единицам величин, эталонам единиц величин, стандартным образцам, средствам измерений (далее СИ), применении стандартных образцов, средств измерений, методик (методов) измерений, а также при осуществлении деятельности по обеспечению единства измерений, предусмотренной законодательством Российской Федерации об обеспечении единства измерений, в том числе при выполнении работ и оказании услуг по обеспечению единства измерений.

    Одной из разновидностей средств измерений являются измерительные системы (далее ИС) и на них распространяются все общие требования к средствам измерений.

    Деятельность метрологических служб по метрологическому обеспечению ИС регламентируют документацией, ГОСТ Р 8.596-2002 (головной документ по метрологическому обеспечению ИС), ГОСТ 27300, а также [6], [7], [8], [9], [10], [11], [12] и другие, в которых установлена

    Метрологическое обеспечение ИС включает в себя следующие виды деятельности:

    - нормирование, расчет метрологических характеристик измерительных каналов ИС;

    - метрологическая экспертиза технической документации на ИС;

    - испытания ИС с целью утверждения типа; утверждение типа ИС и испытания на соответствие утвержденному типу;

    - сертификация ИС;

    - поверка и калибровка ИС;

    - метрологический надзор за выпуском, монтажом, наладкой, состоянием и применением ИС

    Иногда, чтобы получить информацию о параметрах объекта, необходимо проводить комплексные измерения, а значение измеряемой величины получать расчетным путем на основе известных функциональных зависимостей между ней и величинами, подвергаемыми измерениям. Данные задачи успешно решаются с помощью информационных измерительных систем (далее ИИС), получивших широкое распространение. В настоящее время нет общепринятого однозначного определения, что такое ИИС. Среди существующих подходов к рассмотрению понятия ИИС следует выделить два основных. Сущность одного подхода отражена в рекомендации по межгосударственной стандартизации РМГ 29-99 "ГСИ. Метрология. Основные термины и определения", где ИИС рассматривается ,как разновидность измерительной системы (ИС).

    На практике почти повсеместно применяется термин "информационно-измерительная система", который, по мнению ряда видных метрологов, неверно отражает понятие об измерительной информационной системе.

    При образовании термина метрологического характера на первом месте должен указываться основной терминоэлемент (в данном случае - измерительная), затем - дополнительный (информационная). Это положение и отражено в примечании к приведенному выше определению.

    Сущность второго подхода отражена в определениях, приведенных в рекомендации МИ 2438-97 "ГСИ. Системы измерительные. Метрологическое обеспечение. Основные положения", где ИС рассматривается как составная часть более сложных структур - ИИС, которые могут реализовывать следующие функции: измерительные информационные, логические (распознавания образов, контроль), диагностики, вычислительные.

    Необходимо отметить один важный момент, отраженный в пункте 2 примечания к определению, данному в МИ 2438-97. ИС (а также и ИИС) рассматриваются как разновидность СИ. Согласно пункту 1 примечания к тому же определению, в сложных системах рекомендуется объединять измерительные каналы в отдельную подсистему с четко выраженными границами. Последнее обстоятельство связано с одной из особенностей ИИС. Комплектацию ИИС как единого, законченного изделия из частей, выпускаемых различными заводами-изготовителями, часто осуществляется только на месте эксплуатации.

    В результате этого может отсутствовать заводская нормативная и техническая документация (технические условия), регламентирующая технические, в частности, метрологические требования к ИИС как единому изделию. Соответственно возникают трудности с проведением испытаний для целей утверждения типа.

    Возможность развития, наращивания ИИС в процессе эксплуатации или возможность изменения ее состава (структуры) в зависимости от целей эксперимента, по существу затрудняет или исключает регламентацию требований к таким ИИС в отличие от обычных СИ, являющихся "завершенными" изделиями на момент выпуска их заводом-изготовителем. Для обеспечения соответствующей регламентации и осуществляется выделение подсистем в рамках более сложной ИИС. При дальнейшем изложении под сокращением ИИС будет пониматься термин "информационно-измерительная система" как наиболее распространенный и применяемый в МИ 2438-97. Название "информационная" указывает: - на конечный продукт, получаемый при помощи ИИС.

    Основной процесс эмпирического познания - измерение, при помощи которого получается первичная количественная информация. Поэтому к понятию "информационная" добавляется уточняющее "измерительная".

    Одним из условий рассмотрения СИ как системы является необходимость и целесообразность изменений его структуры. Изменения могут осуществляться как от применения к применению (многофункциональная система), так и в процессе применения (управляемая или адаптивная системы).

    Если структура СИ неизменна и условия его использования остаются одинаковыми в течение периода эксплуатации, возможно определить модель СИ типа "вход-выход". Например, электронные СИ для измерения температуры серии 3144,644 фирмы Emerson имеют нормированные MX и, с точки зрения потребителя, не рассматриваются с системных позиций. Автоматизация также не обязательно связана со структурированностью СИ, трактуемого как система. Компактный прибор, рассматриваемый как единое изделие, может быть высоко автоматизированным.

    В развитии ИС можно выделить два этапа, граница между которыми определяется включением в состав систем средств вычислительной техники. На первом этапе структура и функции системы однозначно согласованы и измерительная функция является определяющей. Информационные функции, связанные с отображением результатов измерений, рассматриваются как вспомогательные.

    На втором этапе система становится информационной в широком смысле, т.е. позволяет реализовать не только измерительную, но и другие информационные функции. Результатом является создание ИИС, которые предназначены для выполнения, на основе измерений, функций контроля, испытаний, диагностики и др.

    калибровка информационный измерительный погрешность
    Термины и определения
    Метрология - наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

    Единство измерений - состояние измерений, характеризующееся тем, что их результаты выражаются в узаконенных единицах, размеры которых в установленных пределах равны размерам единиц, воспроизводимых первичными эталонами, а погрешности результатов измерений известны и с заданной вероятностью не выходят за установленные пределы.

    Обеспечение единства измерений - деятельность метрологических служб. направленная на достижение и поддержание единства измерений в соответствии с законодательными актами, а так же правилами и нормами, установленными государственными стандартами и другими нормативными документами по обеспечению единства измерений.

    Государственная система обеспечения единства измерений - комплекс нормативных документов межрегионального и межотраслевого уровней, устанавливающий правила, нормы, требования, направленные на достижение и поддержание единства измерений в стране, (при требуемой точности), утверждаемых Госстандартом страны.

    Физическая величина — одно из свойств физического объекта, общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.

    Единица физической величины - физическая величина фиксированного размера, которой условно присвоено числовое значение, равное 1, и применяемая для количественного выражения однородных с ней физических величин.

    Измерение - совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей и получения значения этой величины.

    Средство измерений - техническое средство, предназначенное для измерений и имеющее нормированные метрологические характеристики.

    Погрешность измерения — отклонение результата измерения от истинного значения измеряемой величины.

    Погрешность средства измерения — разность между показанием средства измерений и истинным значением измеряемой физической величины.

    Поверка средств измерений – совокупность операций, выполняемых в целях подтверждения соответствия средств измерения метрологическим требованиям.

    Калибровка средства измерений – совокупность операций, выполняемых в целях определения действительных значений метрологических характеристик средства измерений.

    Измерительная система (ИС): Совокупность измерительных, связующих, вычислительных компонентов, образующих измерительные каналы, и вспомогательных устройств (компонентов измерительной системы), функционирующих как единое целое, предназначенная для:

    - получения информации о состоянии объекта с помощью измерительных преобразований в общем случае множества изменяющихся во времени и распределенных в пространстве величин, характеризующих это состояние;

    - машинной обработки результатов измерений;

    - регистрации и индикации результатов измерений и результатов их машинной обработки;

    - преобразования этих данных в выходные сигналы системы в разных целях.

    Измерительный канал измерительной системы (измерительный канал ИС): Конструктивно или функционально выделяемая часть ИС, выполняющая законченную функцию от восприятия измеряемой величины до получения результата ее измерений, выражаемого числом или соответствующим ему кодом, или до получения аналогового сигнала, один из параметров которого — функция измеряемой величины.

    Компонент измерительной системы (компонент ИС): Входящее в состав ИС техническое устройство, выполняющее одну из функций, предусмотренных процессом измерений.

    1. Поверка и калибровка ИИС
    1.1 Общие положения
    Поверке подвергают измерительные каналы ИС, на которые распространен сертификат утверждения типа, подлежащие применению или применяемые в сферах распространения государственного метрологического контроля и надзора:

    ИС-1 — первично при выпуске из производства или ремонта, при ввозе по импорту и периодически в процессе эксплуатации. Необходимость первичной поверки измерительных каналов ИС-1 после установки на объекте определяют при утверждении типа ИС-1;

    ИС-2 — первично при вводе в постоянную эксплуатацию после установки на объекте или после ремонта (замены) компонентов ИС-2, влияющих на погрешность измерительных каналов, и периодически в процессе эксплуатации.

    Если в сфере распространения государственного метрологического контроля и надзора применяют только часть из общего числа измерительных каналов ИС, на которые распространен сертификат утверждения типа, а оставшуюся часть — вне этой сферы, то поверке следует подвергать только первую часть измерительных каналов. В этом случае оставшуюся часть измерительных каналов подвергают калибровке.

    В свидетельстве о поверке или сертификате о калибровке таких ИС указывают те каналы, на которые они распространены.

    При первичной поверке ИС-2, установленных по типовому проекту, обязательно проверяют соответствие конкретного экземпляра ИС-2 типовому проекту в части комплектности и других требований проекта.

    Для программ проверяют их соответствие аттестованным программам и защищенность от несанкционированного доступа.

    Калибровке подвергают измерительные каналы ИС, не подлежащие применению или не применяемые в сферах распространения государственного метрологического контроля и надзора.

    Калибровку измерительных каналов ИС проводят в соответствии с [7] и [8].

    Согласно определению ИИС обладают всеми признаками СИ. Соответственно все основные принципы, положенные в основу процедуры поверки СИ, распространяются на ИИС , их ИК и компоненты.
    1.2 Методы контроля метрологических характеристик
    Комплектной называют поверку, при которой определяются MX СИ, присущие ему как единому целому.

    Поэлементной называют поверку, при которой значения MX СИ устанавливаются по MX его составных элементов или частей. Поэлементная поверка характерна для ИС и ИИС.

    Как следует из определения, поверка представляет собой процедуру контроля, неотъемлемой частью которой является экспериментальное определение MX объекта контроля. Наиболее предпочтительным способом контроля и определения MX ИК ИИС и их компонентов является "сквозной" метод. При "сквозном" методе на вход ИК ИИС подается образцовый сигнал, имитирующий измеряемую величину. На выходе контролируемого ИК ИИС снимается выходной сигнал (результат измерения). Полученные в результате эксперимента значения MX служат для сравнения с нормированными MX контролируемого ИК ИИС. Необходимыми условиями для применения "сквозного" метода определения и контроля MX являются:

    наличие доступа ко входу ИК. Ограничение доступа может быть обусловлено конструкцией или способами установки первичных измерительных преобразователей (датчиков), наличием "вредной среды в местах их расположения, климатическими условиями и т.п.;

    возможность задания необходимого набора всех существенных для поверки ИК ИИС значений влияющих величин, характерных для условий эксплуатации ИИС;

    наличие эталонов и средств задания измеряемых величин.

    В тех случаях, когда для ИК ИИС не выполняются перечисленные выше условия применения "сквозного" метода контроля и определения MX ИК ИИС, применяют расчетно-экспериментальный способ. В ИК выделяется такая его часть, которая состоит из компонентов с нормированными MX, для которой применим "сквозной" метод. Желательно, чтобы в доступную часть ИК входило как можно большее число его компонентов, чтобы по возможности охватить при контроле MX линии связи, функциональные преобразователи, устройства связи с объектом, вычислительные устройства. MX ИК в целом вычисляются по определенным экспериментально MX доступной части и нормированным или приписанным MX (по результатам ранее проведенных экспериментальных исследований) недоступной части ИК.

    Выбор экспериментального метода определения и контроля MX ИК ИИС зависит от ряда влияющих факторов, определяющих постановку и проведение эксперимента. На выбор указанных методов влияет также наличие или отсутствие априорных сведений о метрологических свойствах ИК ИИС, вид ИК. Априорные сведения о составе и существенности влияющих факторов могут быть получены: из НД и ТД на ИИС. При отсутствии априорных сведений по составу и существенности факторов, влияющих на точность измерений, проводят предварительное исследование метрологических свойств ИК ИИС. Такие исследования обычно проводят в рамках исследовательских или предварительных испытаний, осуществляемых на этапах разработки, проектирования ИИС или ввода её в эксплуатацию. В рамках поверочных работ подобные исследования не проводятся.

    Методика поверки ИК конкретных образцов ИИС разрабатывается на стадии разработки, предварительных исследований, проверяется и утверждается на стадии проведения испытаний для целей утверждения типа. Разработаны и используются некоторые обобщенные методы контроля MX, используемые при поверке ИК ИИС. Однако, учитывая сложность состава ИИС, методики поверки в подавляющем большинстве случаев индивидуальны для конкретных образцов или типов ИИС. Далее приведены некоторые из общих методов контроля.

    Рассмотрим случай, когда преобладают влияющие факторы, которые приводят к закономерному искажению результатов измерений, а стандартным отклонением (мерой неопределенности, оцениваемой по типу А) можно пренебречь. Структурная схема для выполнения поверки аналоговых и цифроаналоговых ИК приведена на рис.1.


    Рис.1. Структурная схема поверки ИК.
    Эталон 1 задает при входе ИК значения измеряемой величины, соответствующие проверяемым точкам диапазона измерений. При поверке цифроаналоговых ИК в качестве эталона 1 используется произвольный задатчик кодов. Эталон 2 измеряет значения выходных сигналов ИК (в

    частном случае, когда на выходе ИК установлен показывающий аналоговый измерительный прибор, считываются его показания). Для каждой проверяемой точки X входного сигнала вычисляются нижняя Въ и верхняя Bt границы, в пределах которых могут находиться выходные сигналы ИК (показания эталона 2).
    Вь = Fn(X) - Do

    Bt = Fn(X) + D0 ,
    где Fn(X) - значение выходного сигнала ИК, вычисленное для проверяемой точки X по номинальной функции преобразования ИК;

    Do - граница (предел) допускаемых отклонений выходного сигнала ИК от номинального значения.

    При необходимости может вводиться контрольный допуск, равный 0,8 границы Do. По эталону 1 устанавливают последовательно значения X, соответствующие проверяемым точкам диапазона измерений, считывают и регистрируют показания эталона 2. Если для всех проверяемых точек X выполняется неравенство
    Bb < Y(X) < Bt,
    где Y(X) - значение выходного сигнала ИК при входном сигнале равном X. ИК считается удовлетворяющим заданным требованиям (годным). Если хотя бы в одной из проверяемых точек это неравенство не выполняется, то ИК считается не удовлетворяющим заданным требованиям (бракуется).

    Структурная схема для выполнения поверки аналого-цифровых ИК приведена на рис.2. Рассмотрим аналогичный случай, когда преобладают влияющие факторы, которые приводят к закономерному искажению результатов измерений, а стандартным отклонением (мерой неопределенности, оцениваемой по типу А) можно пренебречь.


    Рис.2. Структурная схема поверки аналого-цифровых ИК.
    Эталон задает на входе ИК значения X измеряемой величины или ее носителя, соответствующие проверяемым точкам диапазона измерений. На выходе ИК получается код (показание) N, которое может быть считано экспериментатором или автоматическим устройством. Для каждой проверяемой точки No (для аналого-цифровых ИК проверяемые точки задают

    указанием значения No выходного кода или показания) вычисляют значения Xki и контрольных сигналов по формулам:
    Хи = Fno(No) - Do

    Xk2 = Fno(No) + Do ,
    где Fno(No) - значение входного сигнала ИК, вычисленное для проверяемой точки по номинальной обратной функции преобразования ИК;

    Do - граница допускаемых отклонений входного сигнала от номинального значения.

    При необходимости может вводиться контрольный допуск, равный 0,8 границы Do.

    Устанавливают значение величины X, подаваемой на вход ИК, равным Xki и регистрируют выходной код (показание) Ni проверяемого ИК. Если удовлетворяется неравенство Ni > No , проверяемый ИК бракуют. В противном случае устанавливают значение величины X, подаваемой на вход ИК, равным Хк2 и регистрируют выходной код (показание) N2 проверяемого ИК. Если удовлетворяется неравенство N2 < No , проверяемый ИК бракуют. ИК должен удовлетворять установленным нормам для всех контролируемых точек диапазона измерений.

    ИИС и ИК ИИС, не подлежащие ГМКН, подвергаются калибровке. Несмотря на то, что в разделении понятий поверка и калибровка основным является законодательный аспект, содержание работ по калибровке несколько отличается от содержания работ по поверке, что следует из определения, приведенного в РМГ 29-99. Далее в РМГ 29-99 следует примечание, в котором указывается, что результаты калибровки позволяют определять поправки и другие MX СИ. Учитывая тот факт, что эксплуатация ИИС часто происходит в условиях дефицита априорной информации о MX её компонентов и ИИС в целом, поверочные работы (также как и работы по калибровке) должны осуществляться с учетом необходимости постоянного уточнения MX ИИС, степени их деградации во времени, установления и корректировки МПИ, которые часто (в отношении ИИС-3 как правило) являются индивидуальными для каждого конкретного образца ИИС. При разработке и МЭ методик поверки (калибровки), проведении испытаний для целей утверждения типа этот факт должен учитываться как разработчиком, так и заказчиком. Результаты поверок и калибровок должны являться одной из самых важных составляющих информации, которую следует принимать во внимание при анализе изменения MX ИК ИИС.
    1.3 Метод определения погрешности
    Метод определения погрешности аналоговых и цифро-аналоговых ИК для случая пренебрежимо малой случайной составляющей погрешности

    Если проверяемая точка диапазона измерений X задана в единицах прямоизмеряемой величины или её носителя, то по эталону 1 устанавливают значение входного сигнала, равное X, считывают и регистрируют показания Y эталона 2 и рассчитывают значение D абсолютной погрешности ИК, выраженное в единицах выходного сигнала, по формуле
    ,
    где Fn(X) – значение выходного сигнала ИК, вычисленное для исследуемой точки X по номинальной прямой функции преобразования ИК.

    Если проверяемая точка диапазона измерений Y задана в единицах выходного носителя или показания, то по эталону 1 устанавливают такое значение входного сигнала X, при котором показание эталона 2 равно Y.

    Значение абсолютной погрешности вычисляется в единицах входного сигнала ИК по формуле
    .
    Метод определения характеристик погрешности аналоговых и цифро-аналоговых ИК для случая существенной случайной составляющей погрешности.

    В каждой проверяемой точке проводится не менее n = 10 отсчётов Di (где i = l, 2, ... n) погрешности проверяемого ИК.

    В случае, когда не требуется большой точности эксперимента, или есть основания считать закон распределения случайной составляющей погрешности нормальным, можно для упрощения расчётов принять параметр p = 2. В противном случае целесообразно применить методику п.5.1 в полном объёме.

    Метод определения погрешности аналого-цифровых ИК для случая пренебрежимо малой случайной составляющей погрешности.

    Вариант, который может быть использован при любом соотношении номинальной ступени квантования и границы погрешности ИК, но обязателен для применения при D0 < 5q; проверяемые точки диапазона измерений задают указанием значения N0 выходного кода или показания ИК.

    Регулируя выходной сигнал эталона 1 (ступень регулирования должна быть не более 0,25 q (0,25 номинальной ступени квантования проверяемого ИК), устанавливают на входе ИК такое значение Хm прямоизмеряемой величины или её носителя, при котором на выходе ИК или наблюдается переход от кода (показания) N0 – q к заданному коду N0 проверяемой точки, или наступает приблизительно равночастное чередование кодов N0 – q и N0. Значение погрешности ИК при выходном коде N0 вычисляют по формуле
    .
    При этом формула написана для случая, когда N0  0, Xm  0, q – положительное. Если N0 < 0, Хm < 0, то величине q следует приписать знак минус. Методика не применима, если величины N0, N0 – q и Хm имеют разные знаки.

    Вариант, допускаемый к применению только при D0  5q; проверяемые точки диапазона измерений задают указанием значения Х0 прямоизмеряемой величины или её носителя, поступающих на вход ИК.

    На вход проверяемого канала подают от эталона 1 значение Х0 измеряемой величины или её носителя, соответствующее проверяемой точке диапазона измерений. Считывают и регистрируют значение N выходного кода (показания) ИК. Если наблюдается случайное чередование смежных кодов (показаний), то считывают код (показание), наиболее отличающийся от значения Х0. Вычисляют погрешность ИК по формуле
    .
    Примечание. Следует иметь ввиду, что метод имеет методическую погрешность. Оценка погрешности ИК всегда получается меньшей (по модулю) её истинного значения, и это уменьшение может достигать размера номинальной ступени квантования q проверяемого ИК.

    Метод определения характеристик – погрешности аналого-цифровых ИК для случая существенной случайной составляющей погрешности

    Метод применяется когда СКО случайной составляющей погрешности превышает 0,25q, т.е. при любом значении измеряемой величины в пределах любой ступени квантования чередуются случайным образом не менее двух значений выходного кода (показания) ИК. Проверяемые точки диапазона измерений задают указанием значения Х0 прямоизмеряемой величины или её носителя.

    На вход проверяемого канала подают от эталона 1 значение Х0 измеряемой величины или её носителя, соответствующее исследуемой точке диапазона измерений. Считывают и регистрируют n  10 значений Ni (где i = 1, 2, ..., n) выходного кода (показания) ИК. Вычисляют значения погрешностей ИК по формуле
    .
    При вычислении СКО случайной составляющей погрешности, определяемой, следует вводить поправку Шеппарда
    ,
    где – lp-оценка СКО, вычисленная по формуле п.5.1.3 для найденного значения р.

    При р = 2:
    .
    Если подкоренное выражение получилось меньшим нуля, следует считать, что случайная составляющая погрешности пренебрежимо мала по сравнению с номинальной ступенью квантования ИК, т.е. SP = 0.


    1.4 Проблемы и способы решения в области поверки и калибровки ИИС
    Проблемы проведения испытаний СИ и ИИС тесно связаны с проблемами их метрологической надежности, под которой понимается способность СИ (ИИС) сохранять установленные значения MX в течение заданного времени при определенных режимах и условиях эксплуатации. Учитывая уникальность каждой ИИС, проблема сводится к вопросу обеспечения постоянного мониторинга за характером изменения MX ИИС и ее компонентов на месте эксплуатации ИИС, использование полученной при этом информации для корректировки МПИ. Один из важных путей решения этой задачи - развитие и совершенствование методов самокалибровки и самодиагностики ИК ИИС.

    Для многих ИИС характерен автономный - в метрологическом смысле -режим использования, когда не может быть реализована ее оперативная связь с вышестоящими по поверочной схеме средствами. Автономный режим использования ИИС является одним из источников проблемы децентрализации в системе обеспечения единства измерений. Если для традиционно используемых средств привязка к эталону означает, в конечном итоге, перемещение к месту его дислокации, то для автономной ИИС необходимо встречное движение эталона к месту ее размещения. Соответственно необходима разработка и совершенствование транспортируемых эталонов, необходимых для поверки и калибровки ИК ИИС. При этом необходимо учитывать, что транспортируемые эталоны часто будут использоваться в условиях, отличных от условий хранения и применения эталонов в организациях ГМС и ГНМЦ. Вопросы о методиках и необходимости использования транспортируемых эталонов должны быть решены на стадиях разработки и испытаний ИИС.

    При развитии ИИС проявляются общие тенденции в развитии измерительной техники:

    возрастание точности, расширение номенклатуры измеряемых величин и измерительных задач, расширение диапазонов измерений;

    обеспечение доступа потребителей к средствам измерений высшей точности;

    обеспечение измерений в условиях воздействия "жестких" внешних факторов (высокая температура, большое давление, ионизирующее излучение и т.д.)

    Расширение номенклатуры измеряемых величин в рамках одной ИИС приводит к необходимости "привязки" ИИС к нескольким поверочным схемам. Для решение вопросов самокалибровки необходимо наличие в структуре ИИС встроенных эталонов, что приводит к росту требований по точности к транспортируемым эталонам и практический выход в высшие звенья поверочных схем. Следует отметить, что в настоящее время существуют две противоположные тенденции в развитии техники восприятия входных величин. В соответствии с одной точкой зрения максимум операций по формированию наиболее подходящего для дальнейшего преобразования сигнала следует выполнять в первичном измерительном преобразователе (датчике). Применение интегральных технологий для изготовления чувствительных элементов создает благоприятные возможности производства различных интеллектуальных датчиков, представляющих собой интегральные системы сбора и предварительной обработки результатов измерений. Подобные датчики должны формировать сигналы, не требующие обязательного усиления, иметь слабую чувствительность к влияющим факторам. Учитывая необходимость установки таких датчиков на объекте, что увеличивает недоступную часть ИК ИИС, появляется необходимость в дальнейшем совершенствовании расчетно-экспериментальных методов определения MX и их контроля. Повышаются требования к индивидуальной градуировке интеллектуальных датчиков.

    В области наиболее массовых измерений, например температуры с помощью термопар, основная задача по преобразованию сигналов от датчиков с минимальными потерями измерительной информации решается с помощью ИК. В данном случае используются простые датчики с типовыми характеристиками. В качестве примера могут служить испытания крупных турбогенераторов, при которых в разных точках испытуемого изделия размещают сотни датчиков, рассчитанных на различные диапазоны температур. В данном случае необходимо совершенствование методов испытаний многоканальных ИИС.

    Передача размера единиц физических величин от эталонов рабочим средствам измерений (СИ) является одной из задач поверки СИ, которая в применении к измерительным системам (ИС) может быть решена двумя способами: комплектно и поэлементно. Оба этих способа легли в основу проекта рекомендаций “ГСИ. Порядок проведения поверки измерительных систем”. Вместе с тем, отзывы, полученные в результате рассылки проекта рекомендаций, показали, что специалисты-метрологи, занимающиеся разработкой и утверждением методик поверки, по-разному понимают и трактуют некоторые особенности каждого из способов поверки. Цель настоящей работы состоит в рассмотрении возникших противоречий и выработке единого подхода к понятиям “передача размера единиц физических величин” и “условия поверки” в применении к ИС.

    В соответствии с ГОСТ Р 8.596-2002 при комплектной поверке “контролируют метрологические характеристики измерительных каналов ИС в целом (от входа до выхода канала)”.

    При таком подходе передача размера единиц физических величин ИС от эталонов должна осуществляться так, как это принято для рабочих СИ, т. е. с соблюдением нормальных условий и обязательным введением контрольных допусков (называемых также коэффициентами метрологического запаса) – для обеспечения требуемой достоверности поверки согласно МИ 187-86 и МИ 188-86. При этом поверяемое СИ признаётся пригодным к применению лишь в том случае, если при проверке основной погрешности, её значения не превысят допускаемой нормы:
    ,
    где – предел допускаемой основной погрешности, регламентированный для поверяемого СИ; – коэффициент, определяющий контрольный допуск и зависящий от требований к достоверности поверки и соотношения между пределами погрешности эталона и поверяемого СИ, .

    Однако анализ методик поверки, согласованных, в том числе, уважаемыми метрологическими институтами, показал совершенно противоположное – контрольные допуски не назначаются, поверку рекомендуется проводить в рабочих условиях, случайно сложившихся на момент поверки. При этом при проверке основной погрешности в качестве допускаемых норм применяются значения, вычисленные с учётом результатов измерений влияющих величин, сложившихся на момент проведения поверки по формуле:
    ,
    где – коэффициент влияния i-й влияющей величины, регламентированный для поверяемого ИК ИС; – результат измерений i-й влияющей величины; – ближайшее к результату измерений граничное (минимальное или максимальное) значение нормальных условий эксплуатации, регламентированное для поверяемого ИК ИС; n – количество влияющих величин, регламентированных в качестве условий поверки для поверяемого ИК ИС.

    Разумеется, применение допускаемых норм, вычисленных по формуле ,при проверке основной погрешности является грубейшим нарушением метрологических правил и может привести к существенному снижению достоверности получаемых результатов поверки ввиду того, что:

    – допускаемые нормы не должны превышать предела допускаемой основной погрешности;

    – при использовании средств поверки в рабочих условиях эксплуатации поверяемого ИК ИС может нарушиться принятое соотношение между пределами погрешности эталона и поверяемого ИК ИС.

    Так, возможно ли проведение комплектной поверки (проверки основной погрешности ИК ИС) в условиях, отличающихся от нормальных? Если подходить к рассмотрению этого вопроса формально, то – нельзя, т. к. передача размера единиц физических величин должна осуществляться в нормальных условиях.

    Вместе с тем при эксплуатации ИС могут возникнуть такие ситуации, что обеспечить нормальные условия для поверки ИС невозможно, а провести проверку соответствия метрологических характеристик ИК ИС установленным нормам необходимо. При такой постановке вопроса речь может идти не о поверке (в обычном её понимании), а лишь о возможности переноса результатов проверки погрешности ИК ИС, выполненного в фактических условиях эксплуатации, на нормальные условия. Для достижения той же достоверности результатов проверки основной погрешности должно быть уменьшено в связи с расширением диапазона изменений влияющих величин и возможным увеличением погрешности средств поверки (в условиях эксплуатации, сложившихся на момент поверки ИС).

    Следует помнить, что с уменьшением коэффициента увеличивается вероятность признания негодными в действительности пригодных к применению ИК ИС. Именно поэтому поверку допускается проводить лишь при незначительном отклонении условий поверки от нормальных (для которых нормирован предел допускаемой основной погрешности). В противном случае придётся:

    – либо уменьшить коэффициент до таких значений, что практически все поверяемые ИК ИС будут признаваться негодными,

    – либо уменьшить значения достоверности поверки, т. е. увеличить вероятность признания годными в действительности непригодных к применению ИК ИС, что, разумеется, недопустимо.

    В соответствии с ГОСТ Р 8.596-2002 при поэлементной поверке первичные измерительные преобразователи (датчики) демонтируют и поверяют в лабораторных условиях, а вторичную часть – комплексный компонент, включая линии связи, поверяют на месте установки ИС при одновременном контроле всех влияющих факторов, действующих на отдельные компоненты.

    Следовательно, передача размера единиц физических величин первичным измерительным преобразователям (датчикам) должна осуществляться в нормальных условиях в соответствии с нормативным документом, регламентирующим их поверку (принятым ГЦИ СИ при утверждении типа первичных измерительных преобразователей). Для этого в методике поверки ИС в разделе “Рассмотрение документации” достаточно предусмотреть проверку пригодности к применению первичных измерительных преобразователей (путём проверки свидетельств о поверке или отметок и оттисков поверительных клейм в эксплуатационной документации).

    Что же касается оставшейся части ИК ИС, то в соответствии с ГОСТ Р 8.596-2002 передача размера единиц физических величин комплексному компоненту, включая линии связи, должна осуществляться на месте установки ИС при одновременном контроле всех влияющих факторов, действующих на отдельные компоненты. При этом все рассуждения, должны быть распространены и на комплектную поверку оставшейся части ИК.

    В таких условиях возникает резонный вопрос: должны ли поверяться отдельно компоненты ИС, являющиеся СИ и входящие в состав комплексного компонента, или они должны проходить поверку только в составе ИС? С одной стороны, такие СИ утверждённого типа, применяемые в сферах государственного метрологического контроля и надзора, должны проходить поверку в соответствии с нормативными документами, регламентирующих их поверку (принятым ГЦИ СИ при утверждении их типа). Следовательно, инспектора государственного метрологического надзора вправе потребовать на такие СИ (в том числе и на комплексы измерительно-вычислительные) документы, подтверждающие их поверку. С другой стороны, такие СИ входят в состав комплексного компонента ИС и отдельно от него не применяются. Зачем такие СИ (например, упомянутые выше комплексы измерительно-вычислительные) поверять 2 раза – отдельно и в составе комплексного компонента? Это не только расточительно, но и нецелесообразно.

    Вместе с тем существуют многочисленные системы, в которых все компоненты, являющиеся СИ поверяются поэлементно в соответствии с нормативными документами, регламентирующими их поверку. Очевидно, что в таких случаях, когда размер единиц физических величин уже передан всем компонентам ИС, являющимися СИ, поверка ИС должна заключаться лишь в различных проверках (внешнего вида, условий эксплуатации компонентов, работоспособности, характеристик безопасности, взаимного влияния каналов, от несанкционированного доступа, программного обеспечения и др.), которые вполне могут быть выполнены и в рабочих условиях.

    Следует вспомнить, что такой подход принят для большинства теплосчётчиков, компонентам которых (расходомерам, термопреобразователям и тепловычислителям) размер единиц физических величин передаётся поэлементно в нормальных условиях, а при поверке проводятся лишь различные проверки (в том числе и в проекте рекомендаций “ГСИ. Теплосчётчики и измерительные системы тепловой энергии. … Общие указания по методам поверки”). Такой же подход был, в частности, принят за основу в МИ 3000-2006, в которых “условия поверки ИС должны соответствовать условиям её эксплуатации, нормированным в технической документации, но не выходить за нормированные условия применения средств поверки”.

    При проведении различных проверок ИС (в ходе её поверки) целесообразно предусматривать различные условия поверки: при передаче размеров единиц физических величин – нормальные условия, при других проверках – рабочие условия.

    Обратить внимание ГЦИ СИ и отдела Государственного реестра СИ на необходимость соблюдения нормальных условий при передаче размеров единиц физических величин и целесообразность введения контрольных допусков при рассмотрении и согласовании нормативных документов, регламентирующих поверку СИ, которые должны сопровождаться расчётами достоверности.

    Передачу размеров единиц физических величин в условиях, отличающихся от нормальных, применять лишь в обоснованных случаях при тщательной проверке, подтверждённой расчётами возможности переноса результатов проверки погрешности ИК ИС, выполненной в фактических условиях эксплуатации, на нормальные условия.

    Для разрешения противоречий с органами государственного метрологического надзора (и других надзорных органов) предусматривать в нормативных документах, регламентирующих поверку ИС, прямое указание на нецелесообразность поэлементной поверки СИ (с указанием их перечня), входящих в состав комплексного компонента и поверяемых комплектно в его составе.

    2. Организация работ по обеспечению качества на предприятии ФБУ «Сахалинский ЦСМ»
    Обеспечение качества услуг является стратегическим направлением деятельности Сахалинского центра стандартизации, метрологии и сертификации.

    В области качества руководство IICM ставит перед собой достижение следующих целей:

    совершенствовать деятельность ЦСМ при выполнении основных задач согласно Устава ФБУ «Сахалинский ЦСМ» Федерального агентства по техническому регулированию и метрологии, постоянно удовлетворяя требования Потребителей в качестве и номенклатуре услуг;

    проводить поверку, калибровку средств измерений на уровне, отвечающем требованиям государственной системы обеспечения единства измерений;

    постоянно расширять деятельность в области испытаний продукции;

    обеспечивать конкурентоспособность ЦСМ среди организаций, оказывающих аналогичные услуги, путем достижения признания на национальном уровне, как компетентного, независимого и беспристрастного органа;

    ежегодно увеличивать объем предоставляемых потребителям услуг, отвечающих по качеству национальным требованиям, с учетом структуры потребностей в данных услугах в регионе;

    Достижение этих целей обеспечивается:

    приоритетом качества во всей деятельности ЦСМ, и, прежде всего, в области кадровых, организационных и технических вопросов;

    систематическим обучением и повышением квалификации всего персонала ЦСМ в области качества;

    поддержанием поверочно-технологической базы на техническом уровне, обеспечивающем требования нормативных документов на поверку и калибровку средств измерений;

    выполнением политики в области качества и принятием решений и действий, соответствующих только этой политике;

    обеспечением условий стимулирования каждого члена коллектива в качестве и объеме выполняемых работ.

    Система общего руководства качеством, отвечающая требованиям международных стандартов ИСО серии 9000, гарантирует нашим Потребителям стабильное качество услуг.

    ФБУ «Сахалинский ЦСМ» непрерывно совершенствует систему менеджмента качества с целью повышения её результативности посредством корректирующих и предупреждающих действий.

    Потребность в проведении корректирующих и предупреждающих действий для устранения причин несоответствий может определяться:

    результатами внутренних проверок (аудитов) системы качества и проверок внешними организациями;

    результатами внутренних проверок, проводимых руководством ФБУ «Сахалинский ЦСМ» в подразделениях;

    результатами анализа претензий потребителей.

    Ответственность за координацию, регистрацию и контроль корректирующих и предупреждающих действий, относящихся к функционированию и внутренним проверкам (аудитам) системы качества, возложена на представителя руководства по качеству, заведующую ИЛ, главного метролога и руководителей подразделений.

    Ответственность за организацию и осуществление корректирующих и предупреждающих действий в подчиненных подразделениях для устранения и предотвращения несоответствий при проведении работ и оказании услуг, а также по результатам внутренних проверок (аудитов)системы качества несут руководители подразделений.


    Заключение



    Обеспечение единства и требуемой точности измерений - было и остается главной задачей метрологии. Только проведение систематического анализа производства, проведение мероприятий по повышению его эффективности на основе совершенствования метрологического обеспечения, внедрение в практику современных методов и средств измерений позволит решить эту задачу.

    Метрологическая служба нашего предприятия с успехом решает многие проблемы в области по обеспечению точности измерений. Примером может служить постоянное совершенствование эталонной базы с учетом требований современной измерительной техники, а так же требований технологических процессов измерительных каналов АСУ ТП.

    Список используемой литературы
    1. Федеральный закон «Об обеспечении единства измерений» № 102-ФЗ. 2008 г.

    2. ПР 50.2.006-94 ГСИ. Порядок проведения поверки СИ.

    3. РМГ 29-29 ГСИ. Метрология. Основные термины и определения.

    4. ГОСТ 8.207-76 Прямые измерения с многократными наблюдениями. Методы обработки результатов измерений.

    5. ПР 50 2.016-94 ГСИ. Требования к выполнению калибровочных работ.

    6. МИ 2439—97 Государственная система обеспечения единства измерений. Метрологические характеристики измерительных систем. Номенклатура. Принцип регламентации, определения и контроля

    7. МИ 2440—97 Государственная система обеспечения единства измерений. Методы экспериментального определения и контроля характеристик погрешности измерительных каналов измерительных систем и измерительных комплексов

    8. МИ 222-80 Методика расчета метрологических характеристик ИК ИИС по метрологическим характеристикам компонентов

    9. МИ 2539—99 Государственная система обеспечения единства измерений. Измерительные каналы контроллеров, измерительно-вычислительных, управляющих, программно-технических комплексов. Методика поверки

    10. МИ 2168—91 Государственная система обеспечения единства измерений. ИИС. Методика расчета метрологических характеристик измерительных каналов по метрологическим характеристикам линейных аналоговых компонентов

    11. РД 50-453—84 Характеристики погрешности средств измерений в реальных условиях эксплуатации. Методы расчета

    12. МИ 1552—86 Государственная система обеспечения единства измерений. Измерения прямые однократные. Оценивание погрешностей результатов измерений

    13. МИ 2083—90 Государственная система обеспечения единства измерений. Измерения косвенные. Определение результатов измерений и оценивание их погрешностей

    14. ГОСТ Р 8.596-2002 Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения.

    15. Сборник докладов III международной научно-технической конференции 2–6 октября 2006 г. Пенза УДК 621.317

    Метрологическое обеспечение измерительных систем. / Сборник докладов III международной научно-технической конференции. Под ред. А. А. Данилова. – Пенза, 2006. – 218 с.



    написать администратору сайта