Главная страница
Навигация по странице:

  • Введение Па́йка

  • Контактно-реактивная пайка

  • Реактивно-флюсовая пайка.

  • Пайка с радиационным нагревом

  • 7. Краткое описание источника нагрева,припоя и флюса, применяемых для пайки образцов

  • Список используемых источников

  • вуву. Мылаханов Сайдам Реферат. Пайки. Виды пайки


    Скачать 492.75 Kb.
    НазваниеПайки. Виды пайки
    Дата17.05.2023
    Размер492.75 Kb.
    Формат файлаdocx
    Имя файлаМылаханов Сайдам Реферат.docx
    ТипРеферат
    #1138466

    Министерство науки и образования Российской Федерации

    ФГАОУ Северо-Восточный федеральный Университет им..М.К.Аммосова

    Горный институт

    Кафедра Горное дело




    РЕФЕРАТ

    По дисциплине: Материаловедение

    Тема: «Пайки. Виды пайки»

    Выполнил: Мылаханов Сайдам,

    Студент ГМ-20

    Проверил: Портнягина В.В.


    Якутск, 2023 г

    Содержание

    1. Введение

    2. Виды пайки

    3. Материалы для пайки

    4. Способы пайки

    5. Типы пайки

    6. Применение пайки

    7. Источника нагрева,припоя и флюса.

    8. Заключение

    9. Список используемых источников


    Введение

    Па́йка — технологическая операция, применяемая для получения неразъёмного соединения деталей из различных материалов путём введения между этими деталями расплавленного металла (припоя), имеющего более низкую температуру плавления, чем материал соединяемых деталей. Данная операция производится паяльником.

    Спаиваемые элементы деталей, а также припой и флюс вводятся в соприкосновение и подвергаются нагреву с температурой выше температуры плавления припоя, но ниже температуры плавления спаиваемых деталей. В результате припой переходит в жидкое состояние и смачивает поверхности деталей. После этого нагрев прекращается, и припой переходит в твёрдую фазу, образуя соединение.

    Прочность соединения во многом зависит от смачиваемости припоем соединяемых поверхностей. При пайке металлов качество смачивания обычно зависит от чистоты поверхности — на ней не должно быть окислов металлов или органических жиров и масел. Для удаления загрязнений, понижения поверхностного натяжения и улучшения растекания припоя применяют флюсы или ультразвуковые методы активации поверхности. При пайке неметаллических поверхностей (керамики, стекла) или легкоплавкими припоями химические флюсы не помогают смачиванию, поэтому применяют ультразвуковую активацию поверхности.

    Получение паяного соединения состоит из нескольких этапов:

    А) Предварительная подготовка паяемых соединений;

    Б) Нагрев соединяемых деталей до температуры ниже температуры плавления паяемых деталей;

    В) Удаление окисной плёнки с поверхностей паяемых металлов с помощью флюса;

    Г) Введение в зазор между паяемыми деталями жидкой полоски припоя;

    Д) Взаимодействие между паяемыми деталями и припоем;

    Е) Кристаллизация жидкой формы припоя, находящейся между спаевыми деталями;

    Пайкой можно соединять любые металлы и их сплавы. В качестве припоя используются чистые металлы (они плавятся при строго фиксированной температуре) и их сплавы (они плавятся в определенном интервале температур).

    Разница между температурами начала плавления и полного расплавления называется интервалом кристаллизации. При осуществлении процесса пайки необходимо выполнение температурного условия:

    t1 > t2 > t3 > t4

    где t1 – температура начала плавления материала детали

    t2 – температура нагрева детали при пайке;

    t3 – температура плавления припоя;

    t4 – рабочая температура паянного соединения;

    2. Виды пайки

    Пайка металлов появилась задолго до изобретения электрической сварки. Ее использовали в Древнем Риме и Вавилоне, о чем говорят археологические раскопки. За это время технологии усовершенствовались, и появились новые виды пайки, в которых для нагрева металла используется электрический ток, пламя газовой горелки, энергия лазера или иные источники тепловой энергии.

    По особенностям процесса и технологии пайку можно разделить на капиллярную, диффузионную, контактно-реактивную, реактивно-флюсовую и пайку-сварку.

    Капиллярная пайка. Припой заполняет зазор между соединяемыми поверхностями и удерживается в нем за счет капиллярных сил. На рис.1 показана схема образования шва. Соединение образуется за счет растворения основы в жидком припое и последующей кристаллизации раствора. Капиллярную пайку используют в тех случаях, когда применяют соединение внахлестку. Однако капиллярное явление присуще всем видам пайки.

    Диффузионная пайка. Соединение образуется за счет взаимной диффузии компонентов припоя и паяемых материалов, причем возможно образование в шве твердого раствора или тугоплавких интерметаллов. Для диффузионной пайки необходима продолжительная выдержка при температуре образования паяного шва и после завершения процесса при температуре ниже солидуса припоя.

    Контактно-реактивная пайка. При пайке между соединяемыми металлами или соединяемыми металлами и прослойкой другого металла в результате контактного плавления образуется сплав, который заполняет зазор и при кристаллизации образует паяное соединение. На рис.2 показана схема контактно-реактивной пайки.

    Реактивно-флюсовая пайка. Припой образуется за счет реакции вытеснения между основным металлом и флюсом. Например, при пайке алюминия с флюсом 3ZnCl2 + 2Al = 2AlCl3 + Zn восстановленный цинк является припоем.

    Пайка-сварка. Паяное соединение образуется так же, как при сварке плавлением, но в качестве присадочного металла применяют припой. Наибольшее применение получила капиллярная пайка и пайка-сварка. Диффузионная пайка и контактно-реактивная более трудоемки, но обеспечивают высокое качество соединения и применяются, когда в процессе пайки необходимо обеспечить минимальные зазоры. Качество паяных соединений (прочность, герметичность, надежность и т. д.) зависит от правильного выбора основного металла, припоя, флюса, способа нагрева, величины зазоров, типа соединения.

    3. Материалы для пайки

    Припой. Припои для пайки, заполняющие зазор в расплавленном состоянии между соединяемыми заготовками, должны отвечать следующим требованиям:
    1) температура их плавления должна быть ниже температуры плавления паяемых материалов;

    2) они должны хорошо смачивать паяемый материал и легко растекаться поего поверхности;

    3) должны быть достаточно прочными и герметичными;

    4) коэффициенты термического расширения припоя и паяемого материала не

    должны резко различаться;

    5) иметь высокую электропроводность при паянии радиоэлектронных и токопроводящих изделий.

    Припои классифицируют по следующим признакам:

    А) Химическому составу;

    Б) Температуре плавления;

    В) Технологическим свойствам;

    По химическому составу припои делятся на свинцово-оловянные, серебряные, медно-фосфорные, цинковые, титановые и др.

    Все припои по температуре плавления подразделяют на низкотемпературные (tпл <500о С), или мягкие припои, и высокотемпературные (tпл >500о С), или твердые припои. Припои изготовляют в виде прутков, проволок, листов, полос, спиралей, колец, дисков, зерен и т. д., укладываемых в место соединения.

    К низкотемпературным, или мягким припоям относятся оловянно-свинцовые, на основе висмута, индия, кадмия, цинка, олова, свинца. К высокотемпературным или твердым припоям относятся медные, медно-свинцовые, медно-никелевые, с благородными металлами (серебром, золотом, платиной).

    По техническим свойствам делятся на самофлюсующиеся (частично удаляют окислы с поверхности металла) и композиционные (состоят из тугоплавких и легкоплавких порошков, позволяющих производить пайку с большими зазорами между деталями).

    Изделия из алюминия и его сплавов паяют с припоями на алюминевой основе с кремнием, медью, оловом и другими металлами.

    Магний и его сплавы паяют с припоями на основе магния с добавками алюминия, меди, марганца и цинка.

    Изделия из коррозионно-стойких сталей и жаропрочных сплавов, работающих при высоких температурах(>500о С), паяют с припоями на основе железа, марганца, никеля, кобальта, титана, циркония, гафния, ниобия и палладия.

    Паяльные флюсы. Эти флюсы применяют для очистки поверхности паяемого металла, а также для снижения поверхностного натяжения и улучшения растекания и смачиваемости жидкого припоя.

    Флюс (кроме реактивно-флюсовой пайки) не должен химически взаимодействовать с припоем. Температура плавления флюса должна быть ниже температуры плавления припоя. Флюс в расплавленном и газообразном состояниях должен способствовать смачиванию поверхности основного металла расплавленным припоем. Флюсы могут быть твердые, пастообразные, жидкие и газообразные.

    Флюсы классифицируют по признакам:

    — Температурному интервалу пайки на низкотемпературные (t<4500C) и высокотемпературные (t>4500C);

    — Природе растворителя на водные и неводные;

    — Природе активатора на канифольные, галогенидные, фтороборатные, анилиновые, кислотные и т.д.;

    — По агрегатному состоянию на твердые, жидкие и пастообразные

    Наиболее распространенными паяльными флюсами являются бура

    (Na2 B4 O7 ) и борная кислота (H3 BO3 ), хлористый цинк (ZnCl2 ), фтористый

    калий (KF) и другие галоидные соли щелочных металлов.

    4. Способы пайки

    Способы пайки классифицируют в зависимости от используемых источников нагрева. Наиболее распространены в промышленности пайка в печах, индукционная, сопротивлением, погружением, радиационная, горелками, экзофлюсовая, паяльниками, электронагревательными металлами и блоками.

    Пайка в печах. Нагревают соединяемые заготовки в специальных печах: электросопротивления, с индукционным нагревом, газопламенных и газовых. Припой заранее закладывают в шов собранного изделия, на место пайки наносят флюс и затем помещают в печь, где это изделие нагревают до температуры пайки. Припой расплавляется и заполняет зазоры между соединяемыми заготовками. Процесс пайки продолжается несколько часов.

    Этот способ обеспечивает равномерный нагрев соединяемых деталей без заметной их деформации.Крупные детали паяют в камерных печах с неподвижным подом; большую партию мелких деталей – в печах с сетчатым конвейером или роликовым подом. Пайка в печах позволяет механизировать паяльные работы и обеспечивает стабильное качество изделий и высокую производительность труда.

    Индукционная пайка. Паяемый участок нагревают в катушке-индукторе. Через индуктор пропускают т. в. ч., в результате чего место пайки нагревается до необходимой температуры. Для предохранения от окисления изделие нагревают в вакууме или в защитной среде с применением флюсов. Индуктор выполнен в виде петли или спирали из красной меди. Формы и размеры индуктора зависят от конструкции паяемого изделия. Различают две разновидности пайки с индукционным нагревом: стационарную и с относительным перемещением индуктора или детали.

    Пайка сопротивлением. Соединяемые заготовки нагревают теплотой, выделяющейся при прохождении электрического тока через паяемые детали и токопроводящие элементы. Соединяемые детали являются частью электрической цепи. Нагрев сопротивлением можно осуществлять на контактных сварочных машинах. С нагревом в контактных сварочных машинах паяют при изготовлении тонкостенных изделий из листового материала или при соединении тонкостенных элементов с толстостенными.

    Пайка погружением. Эту пайку выполняют в ваннах с расплавленными солями или припоями. Соляная смесь обычно состоит из 55% KCl и 45% HCl. Температура ванны 700-800о С. На паяемую поверхность, предварительно очищенную от грязи и жира, наносят флюс, между кромками или около места соединения размещают припой, затем детали скрепляют и погружают в ванну. Соляная ванна предохраняет место пайки от окисления. Перед погружением в ванну с расплавленным припоем, покрытые флюсом детали нагревают до 550о С. Поверхности, не подлежащие пайке, предохраняют от контакта с припоем специальной обмазкой из графита с добавками небольшого количества извести. Пайку погружением в расплавленный припой используют для стальных, медных и алюминиевых твердых сплавов, деталей сложных геометрических форм. На этот процесс расходуется большое количество припоев. Разновидностью пайки погружением является пайка бегущей волной припоя, когда расплавленный припой подается насосом и образует волну над уровнем расплава. Паяемая деталь перемещается в горизонтальном направлении. В момент касания ванны проходит пайка. Бегущей волной паяют в радиоэлектронной промышленности при производстве печатного радиомонтажа.

    Пайка с радиационным нагревом. Пайку выполняют за слет излучения кварцевых ламп, расфокусированного электронного луча или мощного светового потока от квантового генератора (лазера).

    Конструкцию, подлежащую пайке, помещают в специальный контейнер, в котором создают вакуум. После вакуумирования контейнер заполняют аргоном и помещают в приспособление, с двух его сторон устанавливают для обогрева кварцевые лампы. После окончания нагрева кварцевые лампы отводят, а приспособление вместе с деталями охлаждают. При применении лазерного нагрева сосредоточенная в узком пучке тепловая энергия обеспечивает испарение и распыление окисной пленки с поверхности основного металла и припоя, что позволяет получать спаи в атмосфере воздуха без применения искусственных газовых сред. При радиационном способе пайки лучистая энергия превращается в тепловую непосредственно в материале припоя и паяемых деталей. Этот способ пайки непродолжителен.

    Экзофлюсовая пайка. В основном этим способом паяют коррозионно-стойкие стали. На очищенное место соединения наносят тонкий порошкообразный слой флюса. Соединяемые поверхности совмещают, на противоположные стороны заготовок укладывают экзотермическую смесь. Смесь состоит из разных компонентов, которые укладывают в форме пасты или брикетов толщиной в несколько миллиметров. Собранную конструкцию устанавливают в приспособлении и помещают в специальную печь, в которой происходит зажигание экзотермической смеси при 500o C.

    В результате экзотермических реакций смеси температура на поверхности металла повышается и происходит расплавление припоя. Этим методом паяют соединения внахлестку и готовые блоки конструкций небольших размеров.

    Газопламенная пайка. Паяемые заготовки нагревают и расплавляют припой газосварочными и плазменными горелками. Газовые горелки обладают наибольшей универсальностью. В качестве горючих газов используют ацетилен, природные газы, водород, пары керосина и т.п.

    При использовании газового пламени припой можно заранее помещать у места пайки или вводить в процессе пайки вручную. На место пайки предварительно наносят флюс в виде жидкой пасты, разведенной водой или спиртом; конец прутка или припоя также покрывают флюсом.

    Нагревают также паяльными лампами, которые по существу являются газовыми горелками, работающими на жидком топливе. Паяльные лампы используют для работы в полевых условиях или в ремонтных мастерских.

    Плазменной горелкой, обеспечивающей более высокую температуру нагрева, паяют тугоплавкие металлы – вольфрам, тантал, молибден, ниобий и т.п.

    Пайка паяльниками. Основной металл нагревают и припой расплавляют за счет теплоты, аккумулированной в массе металла паяльника, который перед пайкой или в процессе ее подогревают. Для низкотемпературной пайки применяют паяльники с периодическим нагревом, с непрерывным нагревом, ультразвуковые и абразивные. Рабочую часть паяльника выполняют из красной меди. Паяльник с периодическим нагревом в процессе работы периодически подогревают от постороннего источника теплоты. Паяльники с постоянным нагревом делают электрическими. Нагревательный элемент состоит из нихромовой проволоки, намотанной на слой асбеста, слюды или на керамическую втулку, устанавливаемую на медный стержень паяльника. Паяльники с периодическим и непрерывным нагревом чаще используют для флюсовой пайки черных и цветных металлов мягкими припоями с температурой плавления ниже 300-350о С.

    Ультразвуковые паяльникиприменяют для бесфлюсовой низкотемпературной пайки на воздухе и для пайки алюминия легкоплавкими припоями. Окисные пленки разрушаются за счет колебаний ультразвуковой частоты.

    Абразивные паяльники. Такими паяльниками можно паять алюминиевые сплавы без флюса. Окисная пленка удаляется в результате трения паяльника об обрабатываемую поверхность. Абразивный паяльник в отличие от электропаяльника имеет рабочий стержень, изготовленный прессованием из порошка припоя и измельченного асбеста.

    5. Типы пайки

    Основными типами паяных соединений являются стыковые и внахлестку. Остальные разновидности соединений являются комбинациями перечисленных. Например, плоские элементы могут быть соединены внахлестку (рис. 3, а), ступенчатым (рис. 3, б), гребенчатым (рис. 3, в), косостыковым (рис 3, г), стыковым (рис.3, д) и тавровым (рис. 3, е) соединениями.

    Стыковое соединение применяют в тех случаях, когда изделие работает не в жестких условиях и от него не требуется герметичности; соединение внахлестку – во всех остальных случаях, причем чем больше площадь перекрытия паяемых заготовок, тем выше будет прочность паяного шва.

    Криволинейные поверхности соединяют между собой и с плоскими поверхностями в сотовых конструкциях, в панелях с гофрированными проставками и т.п. Эти соединения используют в самолетостроении и для изготовления теплообменников.

    К паянным соединениям в зависимости от назначения изделия, кроме общих требований, могут быть предъявлены и специальные по герметичности, электропроводности, коррозионной стойкости и т.п. Сборные части изделий перед пайкой должны быть прочно сое6динены между собой для предотвращения перекосов и относительных смещений. Способы соединения подбирают экспериментальным путем в зависимости от конструкции изделия.

    6. Применение пайки

    В наше время среди различных способов создания неразъемных деталей, пайка занимает второе место после сварки, а в некоторых областях ее позиции являются главенствующими. Трудно себе представить современную IT-промышленность без этого компактного, чистого и прочного способа соединения элементов электронных схем.
    Применение пайки широко и многообразно. Ею соединяют медные трубы в теплообменниках, холодильных установках и всевозможных системах, транспортирующих жидкие и газообразные среды. Пайка является основным способом крепления твердосплавных пластин к металлорежущему инструменту. При кузовных работах с ее помощью крепят тонкостенные детали к тонкому листу. В виде лужения используют для защиты некоторых конструкций от коррозии.
    Широко используется пайка и в домашних условиях. Ею можно соединять между собой детали из различных металлов, уплотнять резьбовые соединения, устранять пористость поверхностей, обеспечивать плотную посадку втулки разболтавшегося подшипника. Везде, где использование сварки, болтов, заклепок или обычного клея по каким-либо причинам невозможно, затруднительно или нецелесообразно, пайка, сделанная даже своими руками, оказывается спасительным выходом из ситуации.

    7. Краткое описание источника нагрева,припоя

    и флюса, применяемых для пайки образцов

    Источником нагрева для пайки является электрический паяльник, который служит для пайки легкоплавкими припоями. Основное назначение паяльника - нагрев припоя до полного расплавления и нанесения его на паяемую поверхность при одновременном подогреве основного металла по месту пайки. С помощью паяльника в процессе пайки паяемую поверхность очищают от оксидов и подают флюс.

    Электропаяльник состоит из корпуса, паяльного стержня, деревянной ручки и соединительного шнура. Внутри корпуса находится нагревательный элемент, который передает непрерывно тепловую энергию рабочему элементу - медному паяльному стержню.

    Для пайки образцов используется оловянно- свинцовый припой ПОС 40. Состав - 39-41% олова, остальное- свинец. Температура плавления - солидус 183°С, ликвидус 235°С. Обладает достаточной точностью, пластичностью, коррозионной стойкостью, хорошей смачивающей способностью по отношению ко многим металлам и сплавам.

    В качестве флюса для пайки применяют канифоль, которую получают из смолы хвойных деревьев. Флюсующие свойства канифоли и флюсов на ее основе, которые применяются при низкотемпературной пайке, объясняются способностью органическихкислот, содержащихся в ней, растворять оксиды меди и некоторых металлов. Являясь поверхностно- активным веществом, она существенно улучшает растекание припоя. При температуре 125°С, канифоль переходит в жидкое состояние, при 150° растворяет, оксиды, при 300ºС разлагается. Нагрев свыше 300°С приводит к обугливанию канифоли и потере флюсующих свойств. Канифоль применяют в виде порошка или раствора в спирте, глицерине, в смеси керосина и бензина.

    Заключение

    На получение качественного соединения в процессе пайки влияет не только правильный выбор технологии, припоя с флюсом и оборудования. Зачастую решающее значение имеют мелкие организационные процедуры, связанные с подготовкой материалов и последующей обработкой. В частности, для использования твердого припоя необходима многоступенчатая зачистка целевой поверхности с применением абразивного шлифования и химического воздействия тетрахлористым углеродом. Готовая к работе деталь должна быть чистой, гладкой и по возможности ровной. Непосредственно в ходе выполнения пайки также рекомендуется особое внимание уделять способу фиксации заготовок. Желательно закреплять их в зажимном инструменте, но так, чтобы последний был защищен от химического и термического воздействия.

    Не стоит забывать и о технике безопасности. Особой осторожности требуют активные расходные материалы – флюс и припой. В большинстве своем это химически небезопасные элементы, которые под высокотемпературным воздействием могут выделять токсичные вещества. Поэтому, как минимум, следует защищать кожные покровы и органы дыхания в процессе работы.

    Список используемых источников

    1. О.В. Роман, О.С. Комаров, Е.А Дорошкевич и др. Лабораторный практикум по технологии металлов и других конструкционных материа­лов. - Минск: Высшая школа, 1974. - 235 с.

    2. A.M. Дальский, И.А. Арутюнова, Т.М. Барсукова и др. Технология конструкционных материалов. - М.: Машиностроение, 1985. - 448 с.

    3. A.M. Дальский и др, Технология конструкционных материалов: Учебник длястудентов машиностроительных специальностей вузов. - М.: Машиностроение, 1992. -448с.

    4. Лашко СВ., Лашко Н.Ф. Пайка металлов. - М.:Машиностроение, 1988.-376с.


    написать администратору сайта