Практическое+задание+№3+Расчёт+параметров+ДПТ (1). Практическая работа Расчет параметров двигателей постоянного тока Теоретические сведения. Коллекторные машины обладают свойством об
Скачать 346 Kb.
|
Практическая работа № 3. Расчет параметров двигателей постоянного тока Теоретические сведения. Коллекторные машины обладают свойством обратимости, т. е. они могут работать как в режиме генератора, так и в режиме двигателя. Поэтому если машину постоянного тока подключить к источнику энергии постоянного тока, то в обмотке возбуждения и в обмотке якоря машины появятся токи. Взаимодействие тока якоря с полем возбуждения создает на якоре электромагнитный момент М, который является не тормозящим, как это имело место в генераторе, а вращающим. Под действием электромагнитного момента якоря машина начнет вращаться, т. е. машина будет работать в режиме двигателя, потребляя из сети электрическую энергию и преобразуя ее в механическую. В процессе работы двигателя его якорь вращается в магнитном поле. В обмотке якоря индуцируется ЭДС ,направление которой можно определить по правилу «правой руки». По своей природе она не отличается от ЭДС, наводимой в обмотке якоря генератора. В двигателе же ЭДС направлена против тока , и поэтому ее называют противоэлектродвижущей силой (противо-ЭДС) якоря. Для двигателя, работающего с постоянной частотой вращения, . (1.1) Известно, что подведенное к двигателю напряжение уравновешивается противо-ЭДС обмотки якоря и падением напряжения в цепи якоря. На основании этого ток якоря . (1.2) Умножив обе части уравнения (1.1) на ток якоря , получим уравнение мощности для цепи якоря: , (1.3) где — мощность в цепи обмотки якоря; — мощность электрических потерь в цепи якоря. Для выяснения сущности выражения проделаем следующее преобразование: , или . где Тогда , (1.4) где — угловая частота вращения якоря; — электромагнитная мощность двигателя. Следовательно, выражение представляет собой электромагнитную мощность двигателя. Преобразовав выражение (1.3) с учетом (1.4), получим . Анализ этого уравнения показывает, что с увеличением нагрузки на вал двигателя, т. е. с увеличением электромагнитного момента М, возрастает мощность в цепи обмотки якоря , т. е. мощность на входе двигателя. Но так как напряжение, подводимое к двигателю, поддерживается неизменным , то увеличение нагрузки двигателя сопровождается ростом тока в обмотке якоря . В зависимости от способа возбуждения двигатели постоянного тока, так же как и генераторы, разделяют на двигатели с возбуждением от постоянных магнитов (магнитоэлектрические) и с электромагнитным возбуждением. Последние в соответствии со схемой включения обмотки возбуждения относительно обмотки якоря подразделяют на двигатели параллельного (шунтовые), последовательного (сериесные) и смешанного (компаундные) возбуждения. В соответствии с формулой ЭДС частота вращения двигателя (об/мин) . Подставив значение из (1.1), получим (об/мин) , (1.5) Частота вращения двигателя прямо пропорциональна напряжению и обратно пропорциональна магнитному потоку возбуждения. Физически это объясняется тем, что повышение напряжения Uили уменьшение потока Ф вызывает увеличение разности ; это, в свою очередь, ведет к росту тока . Вследствие этого возросший ток повышает вращающий момент, и если при этом нагрузочный момент остается неизменным, то частота вращения двигателя увеличивается. Из (1.5) следует, что регулировать частоту вращения двигателя можно изменением либо напряжения U, подводимого к двигателю, либо основного магнитного потока Ф, либо электрического сопротивления в цепи якоря . Направление вращения якоря зависит от направлений магнитного потока возбуждения Ф и тока в обмотке якоря. Поэтому, изменив направление какой-либо из указанных величин, можно изменить направление вращения якоря. Следует иметь в виду, что переключение общих зажимов схемы у рубильника не дает изменения направления вращения якоря, так как при этом одновременно изменяется направление тока и в обмотке якоря, и в обмотке возбуждения. Пусковой ток якоря при полном сопротивлении пускового реостата . (1.7) С появлением тока в цепи якоря возникает пусковой момент , под действием которого начинается вращение якоря. По мере нарастания частоты вращения увеличивается противо-ЭДС , что ведет к уменьшению пускового тока и пускового момента. Схема включения в сеть двигателя показана на рис. 1. Характерной особенностью параллельного возбуждения является то, что ток в обмотке возбуждения (ОВ) не зависит от тока нагрузки (тока якоря). Реостат в цепи возбуждения служит для регулирования тока в обмотке возбуждения и магнитного потока главных полюсов. Рисунок 1. Схема включения двигателя постоянного тока параллельного возбуждения Эксплуатационные свойства двигателя определяются его рабочими характеристиками, под которыми понимают зависимость частоты вращения n, тока I, полезного момента M2, вращающего момента M от мощности на валу двигателя Р2при и . При включении стабилизирующей обмотки согласованно с параллельной обмоткой возбуждения ее МДС компенсирует размагничивающее действие реакции якоря так, что поток Ф во всем диапазоне нагрузок остается практически неизменным. Изменение частоты вращения двигателя при переходе от номинальной нагрузки к х.х., выраженное в процентах, называют номинальным изменением частоты вращения: , (1.8) где — частота вращения двигателя в режиме х.х. Обычно для двигателей параллельного возбуждения , поэтому характеристику частоты вращения двигателя параллельного возбуждения называют жесткой. Введение дополнительного сопротивления в цепь якоря Дополнительное сопротивление (реостат ) включают в цепь якоря аналогично пусковому реостату (ПР). Однако в отличие от последнего оно должно быть рассчитано на продолжительное протекание тока. При включении сопротивления в цепь якоря выражение частоты (1.5) принимает вид , (1.9) где — частота вращения в режиме х.х.; — изменение частоты вращения, вызванное падением напряжения в цепи якоря. Частоту вращения двигателей последовательного возбуждения можно регулировать изменением либо напряжения , либо магнитного потока обмотки возбуждения. В первом случае в цепь якоря последовательно включают регулировочный реостат . С увеличением сопротивления этого реостата уменьшаются напряжение на входе двигателя и частота его вращения. Этот метод регулирования применяют главным образом в двигателях небольшой мощности. В случае значительной мощности двигателя этот способ неэкономичен из-за больших потерь энергии в . Кроме того, реостат ,рассчитываемый на рабочий ток двигателя, получается громоздким и дорогостоящим. Регулировать частоту вращения двигателя изменением магнитного потока можно тремя способами: шунтированием обмотки возбуждения реостатом , секционированием обмотки возбуждения и шунтированием обмотки якоря реостатом . Включение реостата , шунтирующего обмотку возбуждения, а также уменьшение сопротивления этого реостата ведет к снижению тока возбуждения , а следовательно, к росту частоты вращения. Этот способ экономичнее предыдущего, применяется чаще и оценивается коэффициентом регулирования . Обычно сопротивление реостата принимается таким, чтобы . При секционировании обмотки возбуждения отключение части витков обмотки сопровождается ростом частоты вращения. При шунтировании обмотки якоря реостатом увеличивается ток возбуждения , что вызывает уменьшение частоты вращения. Этот способ регулирования, хотя и обеспечивает глубокую регулировку, неэкономичен и применяется очень редко. Потери в машинах постоянного тока В машинах постоянного тока, как и в других электрических машинах, имеют место магнитные, электрические и механические потери (составляющие группу основных потерь) и добавочные потери. Магнитные потери происходят только в сердечнике якоря, так как только этот элемент магнитопровода машины постоянного тока подвергается перемагничиванию. Величина магнитных потерь, состоящих из потерь от гистерезиса и потерь от вихревых токов, зависит от частоты перемагничивания значений магнитной индукции в зубцах и спинке якоря, толщины листов электротехнической стали, ее магнитных свойств и качества изоляции этих листов в пакете якоря. Электрические потери в коллекторной машине постоянного тока обусловлены нагревом обмоток и щеточного контакта. Потери в цепи возбуждения определяются потерями в обмотке возбуждения и в реостате, включенном в цепь возбуждения: (1.10) Здесь — напряжение на зажимах цепи возбуждения. Потери в обмотках цепи якоря (1.11) где сопротивление обмоток в цепи якоря , приведенное к расчетной рабочей температуре . Электрические потери также имеют место и в контакте щеток: (1.12) где — переходное падение напряжения, В, на щетках обеих полярностей, принимаемое в соответствии с маркой щеток. Электрические потери в цепи якоря и в щеточном контакте зависят от нагрузки машины, поэтому эти потери называют переменными. Механические потери. В машине постоянного тока механические потери складываются из потерь от трения щеток о коллектор (1.13) трения в подшипниках и на вентиляцию (1.14) где — коэффициент трения щеток о коллектор — поверхность соприкосновения всех щеток с коллектором, м2; — удельное давление, Н/м2, щетки [для машин общего назначения =(2÷3)·104 Н/м2]; окружная скорость коллектора (м/с) диаметром (м) .(1.15) Механические и магнитные потери при стабильной частоте вращения можно считать постоянными. Сумма магнитных и механических потерь составляют потери х.х.: . (1.16) Если машина работает в качестве двигателя параллельного возбуждения в режиме х.х., то она потребляет из сети мощность . (1.17) Однако ввиду небольшого значения тока электрические потери и весьма малы и обычно не превышают 3% потерь . Поэтому, не допуская заметной ошибки, можно записать , откуда потери х.х. . (1.18) Таким образом, потери х.х. (магнитные и механические) могут быть определены экспериментально. В машинах постоянного тока имеется ряд трудно учитываемых потерь — добавочных. Эти потери складываются из потерь от вихревых токов в меди обмоток, потерь в уравнительных соединениях, в стали якоря из-за неравномерного распределения индукции при нагрузке, в полюсных наконечниках, обусловленных пульсацией основного потока из-за наличия зубцов якоря, и др. Добавочные потери составляют хотя и небольшую, но не поддающуюся точному учету величину. Поэтому, согласно ГОСТу, в машинах без компенсационной обмотки значение добавочных потерь принимают равным 1% от полезной мощности для генераторов или 1% от подводимой мощности для двигателей. В машинах с компенсационной обмоткой значение добавочных потерь принимают равным соответственно 0,5%. Мощность (Вт) на входе машины постоянного тока (подводимая мощность): для генератора (механическая мощность) (1.19) где — вращающий момент приводного двигателя, Н∙м; для двигателя (электрическая мощность) . (1.20) Мощность (Вт) на выходе машины (полезная мощность): для генератора (электрическая мощность) ; (1.21) для двигателя (механическая мощность) . (1.22) Здесь и — момент на валу электрической машины, Н-м; — частота вращения, об/мин. Коэффициент полезного действия. Коэффициент полезного действия электрической машины представляет собой отношение мощностей отдаваемой (полезной) к подводимой (потребляемой) ,: . Определив суммарную мощность вышеперечисленных потерь , (1.23) можно подсчитать КПД машины по одной из следующих формул: для генератора ; (1.24) для двигателя . (1.25) Обычно КПД машин постоянного тока составляет 0,75—0,90 для машин мощностью от 1 до 100 кВт и 0,90—0,97 для машин мощностью свыше 100 кВт. Намного меньше КПД машин постоянного тока малой мощности. Например, для машин мощностью от 5 до 50 Вт = 0,15÷0,50. Указанные значения КПД соответствуют номинальной нагрузке машины. Зависимость КПД машины постоянного тока от нагрузки выражается графиком , форма которого характерна для электрических машин. Коэффициент полезного действия электрической машины можно определять: а) методом непосредственной нагрузки по результатам измерений подведенной и отдаваемой мощностей; б) косвенным методом по результатам измерений потерь. Метод непосредственной нагрузки применим только для машин малой мощности, для остальных случаев применяется косвенный метод, как более точный и удобный. Установлено, что при > 80 % измерять КПД методом непосредственной нагрузки нецелесообразно, так как он дает большую ошибку, чем косвенный метод. Существует несколько косвенных способов определения КПД. Наиболее прост способ холостого хода двигателя, когда потребляемая машиной постоянного тока мощность затрачивается только на потери х.х. Что же касается электрических потерь, то их определяют расчетным путем после предварительного измерения электрических сопротивлений обмоток и приведения их к рабочей температуре. Задание: Двигатель постоянного тока параллельного возбуждения характеризуется следующими номинальными величинами: мощность на валу Рн, напряжение на зажимах двигателя Uн, частота вращения nн, потери мощности в цепях якоря ΔРан, коэффициент полезного действия ηн, процентное значение тока возбуждения iвн%. Необходимо: 1. Определить для номинального режима работы момент на валу двигателя Мн, ток якоря Iан, ток обмотки возбуждения Iвн и ток, потребляемый из сети Iн. 2. Выбрать сопротивление пускового реостата Rпуск из условия, чтобы пусковой ток был в 2,5 раза больше номинального Iан. 3. Рассчитать и построить графики зависимостей n = f(Ia), n = f(M), η = f(Ia). 4. Определить пределы изменения частоты вращения двигателя при регулировании добавочного сопротивления в цепи якоря от 0 до 4 Ra и токе Ia=Iан. Исходные данные:
Механические потери в стали и добавочные потери считаем постоянными. График КПД построить задаваясь значениями 0, 0,25; 0,5; 0,75; 1; 1,25Iaн. |