Главная страница
Навигация по странице:

  • Принцип работы термопары

  • Практическая работа № 16. Практическая работа 16 Изучение принципа работы датчика температуры термопара


    Скачать 42.27 Kb.
    НазваниеПрактическая работа 16 Изучение принципа работы датчика температуры термопара
    Дата05.09.2022
    Размер42.27 Kb.
    Формат файлаdocx
    Имя файлаПрактическая работа № 16.docx
    ТипПрактическая работа
    #662343

    Практическая работа 16

    Изучение принципа работы датчика температуры: термопара
    Термопарой, или термоэлектрическим преобразователем, называют устройство для измерения температуры, основой работы которого является термоэлектрический эффект.

    В бытовых целях используются в различных приборах, в самых простых и технически сложных: от утюгов, паяльников, холодильников до автомобилей и отопительных котлов. Благодаря большому диапазону измеряемых температур (от -250оС до +2500оС) широкое применение термопары нашли в промышленности, коммунальном хозяйстве, науке и медицине. Также термоэлектрические преобразователи работают как часть систем автоматики и управления, снимая и передавая данные об изменениях температуры. Такие датчики отличаются надежностью, невысокой стоимостью, необходимой точностью и низкой инертностью.

    Работа термопары основана на свойстве изменения термо-ЭДС (термоэлектродвижущей силы) от повышения или уменьшения температуры. Точность показаний зависит от типа конструкции, соблюдения технологических требований, схемы подключения проводников.

    Конструкция термоэлектрического преобразователя обусловлена тепловой инерцией и чувствительностью используемых элементов, условиями применения: диапазоном температур, агрессивностью и агрегатным состоянием среды, необходимостью использовать защиту.

    Принцип работы термопары

    Принцип действия термопары - термоэлектрический эффект, или эффект Зеебека.

    Явление это было открыто ученым в 1821 году и состоит в следующем:

    В замкнутой цепи из двух разнородных проводников возникает электродвижущая сила (термо-ЭДС), если места их соединения, или спаи, поддерживать при разной температуре. Эффект не возникает в случае использования однородных материалов, а также при одинаковых температурах спаев. Величина термоэлектродвижущей силы зависит от материала проводников и разницы температур контактов, направление тока в контуре - от того, температура какого спая выше.

    На практике в термопаре используют проводники из разных сплавов, они также называются термоэлектродами. Один спай, «горячий», выполняют сваркой или скручиванием и помещают в среду с измеряемой температурой; другой, «холодный», замыкается на контакты измерительного прибора или соединяется с устройством автоматического управления. В современных сложных термопарах используются цифровые преобразователи сигнала.

    Термо-ЭДС возникает за счет разницы потенциалов между соединениями проводников при интенсивном нагреве или охлаждении горячего спая. Напряжение на холодном спае пропорционально зависит от температуры на горячем. При этом температура на холодном должна быть постоянной, иначе возникает большая погрешность измерений. Для высокой точности холодный контакт помещается в специальные камеры, где температура поддерживается на одном уровне.

    Как датчики температур термоэлектрические преобразователи применяют в автоматизированных системах управления. В газовом оборудовании (котлы, плиты, колонки) с помощью термопар осуществляют термоконтроль. По данным термопары срабатывает аварийное отключение приборов, если превышена допустимая температура.

    От назначения термопары зависит ее конструкция и материалы проводников: различные комбинации металлов предназначены для различных сред и диапазонов температур. 


    Рабочие элементы для защиты от воздействия внешних факторов могут помещаться в колбу, или чехол: например, защитный материал для термопары в газовом котле - нержавеющая или обычная сталь. При температурах до 1000-1100оС применяют жаростойкие сплавы, при более высоких — фарфор, тугоплавкие сплавы. Для измерений в особых условиях среды, к примеру, при высоком давлении, требуется герметичность термопары.

    Если среда измерения не оказывает вредного влияния на проводники, защиту не используют. Бескорпусный вариант с незакрытым местом соединения двух проводников отличается низкой инертностью и практически мгновенным измерением температуры.

    В зависимости от количества мест измерения термопары могут быть одноточечные и многоточечные. Соответственно, длина рабочей части термопары колеблется от 120 мм до 20000 мм. Потребность во многих точках измерения (до нескольких десятков) возникает, в частности, в химической и нефтехимической промышленности для тех емкостей, где перерабатываются жидкости (реакторов, баков, колонн фракционирования).

    Классификация термопар

    Принцип действия термопары основан на возникновении разности потенциалов в проводниках, поэтому металлы термоэлектродов должны отличаться по химическим и физическим характеристикам. Для применения в термопарах используются различные сплавы цветных и благородных металлов.

    Благородные металлы позволяют существенно повысить точность измерений, сказывается меньшая термоэлектрическая неоднородность и стойкость к окислению. Они используются для измерений до 1900оС, при более высоких температурах необходимы специальные жаростойкие сплавы. Неблагородные металлы применяются до 1400оС.

    Все материалы проводников обладают различной плавкостью, стойкостью к окислению, диапазоном рабочих температур. Именно в указанном производителем интервале температур возможна качественная работа устройства и точные данные измерений.

    Для классификации групп термопар по российскому ГОСТу используют три кириллические буквы, международная классификация подразумевает обозначение одной буквой латиницы: например, нихросил-нисиловая термопара имеет обозначение ТНН, или N; платинородий-платинородиевая — ТПР, тип В.

    Другая классификация термопар учитывает типы спаев, которые могут быть использованы:

    • одноэлементные и двухэлементные;

    • изолированные и соединенные с корпусом;

    • заземленные и незаземленные.

    Инерционность термопары снижается при заземлении на корпус, а это увеличивает быстродействие и точность измерений. Также для уменьшения инерционности в некоторых устройствах спай оставляют снаружи защитного корпуса.


    написать администратору сайта